预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进高斯混合模型的运动物体的图像检测 摘要: 本文提出了一种改进高斯混合模型(GMM)的运动物体图像检测方法。传统的GMM方法在处理目标跟踪时容易受到光照条件、背景复杂度等因素的影响,造成误检和漏检现象。本文通过增加背景图像的反比权值、引入颜色模型等方法,对GMM进行改进,增强了对运动物体的检测效果。实验结果表明,该方法在复杂背景下有较强的适应性和鲁棒性,能够有效地检测出运动物体。 关键词:运动物体检测;高斯混合模型;背景建模 Abstract: Inthispaper,animprovedGaussianMixtureModel(GMM)formotionobjectimagedetectionisproposed.TraditionalGMMmethodsareofteninfluencedbylightingconditions,backgroundcomplexityandotherfactorswhendealingwithtargettracking,leadingtofalsepositivesandfalsenegatives.ThispaperimprovesGMMbyincreasingtheinverseweightofthebackgroundimageandintroducingcolormodels,enhancingthedetectioneffectonmovingobjects.Experimentalresultsshowthatthemethodhasstrongadaptabilityandrobustnessincomplexbackgrounds,andcaneffectivelydetectmovingobjects. Keywords:Motionobjectdetection;GaussianMixtureModel;backgroundmodeling Introduction: Objectdetectionhasalwaysbeenahotresearchtopicinthefieldofcomputervision.Asanimportantcomponentofobjectdetection,motionobjectdetectionplaysanimportantroleinavarietyofapplications,suchasvideosurveillance,trafficmonitoring,andhuman-computerinteraction.Withthedevelopmentofcomputerhardwareandalgorithms,theaccuracyofmotionobjectdetectionhasbeengreatlyimproved.However,traditionalmethodsstillfacechallengessuchasilluminationchanges,complexbackgrounds,andocclusion.Therefore,improvingtheaccuracyandrobustnessofmotionobjectdetectionisanimportantresearchdirection. Gaussianmixturemodel(GMM)isawidelyusedmethodinmotionobjectdetection.ItmodelsthebackgroundbyamixtureofGaussiandistributions,andthensubtractsthebackgroundmodelfromthecurrentframetoobtaintheforegroundmask.Thebackgroundmodelisupdateddynamicallytoadapttochangesintheenvironment.However,traditionalGMMmethodsareofteninfluencedbyilluminationchanges,backgroundcomplexityandotherfactors,leadingtofalsepositivesandfalsenegatives. Inthispaper,animprovedGMMmethodisproposedtoenhancethedetectioneffectonmovingobjects.Themethodisbasedontwoaspects:improvingbackgroundmodelingandintroducingcolormodels.Inthebackgroundmodelingas