预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进遗传模拟退火算法的动力总成悬置系统优化设计 摘要 本文提出了一种基于改进遗传模拟退火算法的动力总成悬置系统优化设计方法。该方法通过对动力总成悬置系统参数的优化设计,达到提高整个动力总成系统的性能的目的。首先,将传统的遗传模拟退火算法进行改进,使得算法具有更好的全局寻优能力;接着,采用该算法对动力总成悬置系统进行优化设计,实现对悬置系统参数进行合理布置,达到最优化设计的目标;最后,通过实验验证了该方法的有效性和可行性。 关键词 改进遗传模拟退火算法;动力总成悬置系统;优化设计;全局寻优;最优化设计 Abstract Thispaperproposesanoptimizationdesignmethodforpowertrainsuspensionsystembasedonimprovedgeneticsimulatedannealingalgorithm.Thismethodaimstoimprovetheperformanceoftheentirepowertrainsystembyoptimizingtheparametersofthepowertrainsuspensionsystem.Firstly,thetraditionalgeneticsimulatedannealingalgorithmisimprovedtohavebetterglobaloptimizationability.Then,thisalgorithmisusedtooptimizethepowertrainsuspensionsystem,realizingthereasonablelayoutofthesuspensionsystemparameterstoachievethegoalofoptimaldesign.Finally,theeffectivenessandfeasibilityofthismethodareverifiedbyexperiments. Keywords Improvedgeneticsimulatedannealingalgorithm;powertrainsuspensionsystem;optimizationdesign;globaloptimization;optimaldesign 1.Introduction Thepowertrainisthecorecomponentofavehicle,anditssuspensionsystemisdirectlyrelatedtothevehicle'shandlingstabilityandridecomfort.Theoptimizationdesignofthepowertrainsuspensionsystemisofgreatsignificancetoimprovetheoverallperformanceofthevehicle.Thetraditionaloptimizationdesignmethodsarebasedonexperience,whichhastheshortcomingsofhighcost,lowefficiency,andalackofglobaloptimizationability.Therefore,itisnecessarytoadoptamoreefficientandfeasibleoptimizationdesignmethod. Thegeneticalgorithm(GA)andsimulatedannealingalgorithm(SA)arewidelyusedoptimizationalgorithms,andtheircombinationcanmakeupforeachother'sdeficienciesandimproveoptimizationperformance.However,thetraditionalgeneticsimulatedannealingalgorithmhaspoorglobaloptimizationability,whichhindersitsapplicationinpowertrainsuspensionsystemoptimizationdesign.Therefore,thispaperproposesanimprovedgeneticsimulatedannealingalgorithm,whichhasbetterglobaloptimizationabilityandcanbeusedforpowertrainsuspensionsystemoptimizationdesign. 2.Researchmethodsandsteps 2.1