预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于GA优选参数的SVR水质参数遥感反演方法 1.Introduction Waterqualityisavitalaspectofmaintaininghealthyaquaticecosystemsandensuringthewell-beingofhumanpopulations.However,conventionalmethodsformonitoringwaterqualityareoftenexpensive,labor-intensive,andtime-consuming.Remotesensingtechnologyoffersapromisingalternativeformonitoringwaterqualityparameters.Inrecentyears,supportvectorregression(SVR)hasproventobeapowerfultoolforwaterqualityparameterestimationusingremotesensingdata.However,theaccuracyofSVRmodelsstronglydependsontheselectionofappropriateinputparametersandhyperparameters.Inthisstudy,weproposeamethodologytooptimizetheselectionofparametersforSVR-basedwaterqualityparameterestimationusinggeneticalgorithms(GA). 2.Background Supportvectorregression(SVR)isasupervisedlearningalgorithmthathasbeenwidelyusedformodelingnon-linear,high-dimensionaldata.TheperformanceofSVRmodelsishighlydependentontheselectionofhyperparameters,especiallytheregularizationparameterCandkernelparameterγ.Theoptimalvaluesforthesehyperparameterscanbeobtainedthroughgridsearchorotheroptimizationtechniques.However,thesemethodsarecomputationallyexpensiveandmayresultinoverfitting. Geneticalgorithms(GA)areatypeofheuristicoptimizationtechniqueinspiredbybiologicalevolutionprocesses.GAcaneffectivelysearchforaglobaloptimalsolutioninalargesearchspaceandavoidlocaloptima.GAhasbeenappliedinvariousfields,includingparameterselectionformachinelearningmodels,featureselection,andoptimizationofcomplexsystems. 3.Methodology Theproposedmethodinvolvesthefollowingsteps: Step1:Datapreprocessing Remotesensingdataforwaterqualityestimationtypicallyincludesmultispectralorhyperspectraldata,aswellasinsituwaterqualitymeasurements.Thedatashouldbepreprocessedtoremovenoise,correctatmosphericeffects,andnormalizethedata. Step2:Featureselection Featureselectionreferstotheprocessofidentifyingthemostinformativefeaturesfromtheinputdata.Inthisstudy,weusedthecorrelation-basedfeatureselection(CFS)algorithmtoselectrelevantfeaturesbasedontheircorrelationwiththeta