预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

布丰的投针试验 公元1777年的一天,法国科学家D·布丰(D·buffon1707~1788)的家里宾客满堂,原来他们是应主人的邀请前来观看一次奇特试验的。 试验开始,但见年已古稀的布丰先生兴致勃勃地拿出一张纸来,纸上预先画好了一条条等距离的平行线。接着他又抓出一大把原先准备好的小针,这些小针的长度都是平行线间距离的一半。然后布丰先生宣布:“请诸位把这些小针一根一根往纸上扔吧!不过,请大家务必把扔下的针是否与纸上的平行线相交告诉我。” 客人们不知布丰先生要干什么,只好客随主行,一个个加入了试验的行列。一把小针扔完了,把它捡起来又扔。而布丰先生本人则不停地在一旁数着、记着,如此这般地忙碌了将近一个钟头。最后,布丰先生高声宣布:“先生们,我这里记录了诸位刚才的投针结果,共投针2212次,其中与平行线相交的有704次。总数2212与相交数704的比值为3.142。”说到这里,布丰先生故意停了停,并对大家报以神秘的一笑,接着有意提高声调说:“先生们,这就是圆周率π的近似值!” 众宾哗然,一时议论纷纷,个个感到莫名其妙;“圆周率π?这可是与圆半点也不沾边的呀!” 布丰先生似乎猜透了大家的心思,得意洋洋地解释道:“诸位,这里用的是概率的原理,如果大家有耐心的话,再增加投针的次数,还能得到π的更精确的近似值。不过,要想弄清其间的道理,只好请大家去看敝人的新作了。”随着布丰先生扬了扬自己手上的一本《或然算术试验》的书。 π在这种纷纭杂乱的场合出现,实在是出乎人们的意料,然而它却是千真万确的事实。由于投针试验的问题,是布丰先生最先提出的,所以数学史上就称它为布丰问题。布丰得出的一般结果是:如果纸上两平行线间相距为d,小针长为l,投针的次数为n,所投的针当中与平行线相交的次数是m,那么当n相当大时有: 在上面故事中,针长l等于平行线距离d的一半,所以代入上面公式简化 这便是著名的布丰公式。