预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

具有三时滞的捕食-被捕食系统的稳定性和分支分析(英文) Introduction Predator-preyinteractionsisoneofthekeyecologicalmechanismsthatregulatepopulationdynamics.Itiswidelyunderstoodthatpredator-preysystemsarepronetoexhibitcomplexbehaviorsuchasoscillations,chaoticbehavior,andcoexistenceofmultipleequilibriumpoints.Spatiallydistributedmodelsofprey-predatorinteractionshavebeenpopularinstudyingtheimpactofmovement,dispersal,andotherecologicalfactorsonthestabilityandcoexistenceofthepopulations.Inthispaper,weconsiderasimplemodelofathreetime-delayedpredator-preysystemandanalyzeitsstabilityproperties. ModelFormulation Ourmodelconsistsofthreemainvariables:thepreypopulation(x),thepredatorpopulation(y),andadelayedpredatorpopulation(z).Thedynamicsofthemodelaregivenbythefollowingdifferentialequations: dx/dt=rx(1-x/k)-axy-bxz(t-d1) dy/dt=bxy-cy-dyz(t-d2) dz/dt=eyz(t-d3)-fz Thefirstequationdescribesthegrowthofthepreypopulationwithlogisticgrowth(rx(1-x/k)).Thesecondequationdescribestheinteractionbetweenthepreyandthepredatorpopulations,wherethepredationrateisproportionaltotheproductofthepreyandpredatorpopulations.Thethirdequationdescribesthedelayedresponseofthepredatorpopulationonthepreypopulationwithtimedelay(d1).Thefourthequationdescribesthedelayedresponseofthepredatorpopulationonthepredatorpopulationwithtimedelay(d2).Thefifthequationdescribesthedelayedresponseofthepredatorpopulationonthepreypopulationwithtimedelay(d3). Theparametersofthemodelareasfollows:ristheintrinsicgrowthrateofthepreypopulation,kisthecarryingcapacityofthepreypopulation,aistheattackrateofthepredatorontheprey,bistheconversionrateofpreybiomasstopredatorbiomass,cisthemortalityrateofthepredatorpopulation,disthedecayrateofthedelaypredatorpopulation,eistheconversionrateofpredatorbiomasstodelayedpredatorbiomass,andfisthedecayrateofthedelayedpredatorpopulation. StabilityAnalysis Toinvestigatethestabilityofthesystem,webeginbyfindingtheequilibriumpointsofthesystembysettingthetimederivativesofallvariablestozero: x*=k(1-d1b/f)/(r+ay*+bz(d1)/f) y*=(c+dy*z