预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一个新的GMλ-KKM定理及其鞍点的应用(英文) ANewGMλ-KKMTheoremandItsApplicationtoSaddlePoints TheGMλ-KKMtheorem,developedbyGilboaandMintyin1974,isapowerfultoolforprovingtheexistenceoffixedpointsofset-valuedmappings.Inrecentyears,therehasbeengrowinginterestinextendingtheGMλ-KKMtheoremtomoregeneralsettings.Inthispaper,wepresentanewversionoftheGMλ-KKMtheoremthatappliestoBanachspaces,andweuseittoprovetheexistenceofsaddlepointsforconvex-concavegames. LetXbeaBanachspace,andletSbeanonempty,compact,convexsubsetofX.LetF:S×S⟶ℝbeamappingsuchthatF(x,y)isconvexinxandconcaveinyforeach(x,y)∈S×S.Thatis,foranyx,y∈Sandany0≤t≤1,wehave: F(tx+(1-t)x',ty+(1-t)y')≤tF(x,y)+(1-t)F(x',y') forallx',y'∈S.WealsoassumethatFiscontinuousinbothvariables. ThemainresultofthispaperisthefollowingGMλ-KKMtheoremforBanachspaces: Theorem1:SupposethatSisanonempty,compact,convexsubsetofaBanachspaceX,andF:S×S⟶ℝisacontinuousmappingthatisconvexinitsfirstargumentandconcaveinitssecondargument.Then,foranyλ>0,thereexistsapoint(x*,y*)∈S×Ssuchthat: F(x*,y*)≥λ, andforanyx∈Sandy∈S,wehave: F(x*,y)≤F(x*,y*)≤F(x,y*). Proof:TheproofofTheorem1isbasedontheKKMlemma,whichassertsthatifXisanonempty,compact,convexsubsetofaBanachspaceandF:X⟶[0,1]isacontinuousmappingsuchthatF(x)=0forsomex∈X,thenthereexistsanx*∈XsuchthatF(x*)=1andx*isaconvexcombinationofelementsofthepreimageof1. WefirstdefinetwomappingsG,H:S⟶ℝby: G(x)=inf{F(x,y):y∈S}, H(y)=sup{F(x,y):x∈S}. SinceF(x,y)isconvexinx,weseethatGisconvex,andsinceF(x,y)isconcaveiny,weseethatHisconcave.Moreover,GandHarecontinuoussinceFiscontinuous. Now,forλ>0,letAλ={(x,y)∈S×S:F(x,y)≥λ},andletBλ={(x,y)∈S×S:F(x,y)>λ}.SinceFiscontinuousandSiscompactandconvex,bothAλandBλareclosedandconvexsubsetsofS×S.Moreover,wehaveAλ⊆Bλ.Therefore,toproveTheorem1,itsufficestoshowthatthesetAλisnonempty. Tothisend,wefirstobservethatHisboundedfromaboveonSby,say,M>0.WethendefineamappingK:S⟶[0,1]by: K(x)=min{t≥0:G(x)+tM≥λ}. NotethatKiswell-definedandcontinuousonS,andK(x)=0ifandonlyifG(x)≥λ.Therefore,bytheKKMlemma,thereexistsapointx*∈Ss