预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种融合实体语义知识的实体集合扩展方法 Title:EntitySetExpansion:AMethodforIncorporatingEntitySemanticKnowledge 1.Introduction: Inrecentyears,theprogressinnaturallanguageprocessingandmachinelearningtechniqueshasenabledtheextractionandutilizationofsemanticknowledgefromvarioussources,suchasontologies,knowledgegraphs,andsemanticwebdata.Entitysetexpansionisataskthataimstoexpandagivenentitysetbyincorporatingadditionalentitiesthataresemanticallyrelated.Thispaperproposesanovelmethodforentitysetexpansionthatleveragesentitysemanticknowledgetoenhancetheprocess. 2.RelatedWork: Previousapproachestoentitysetexpansionhavefocusedonvariousmethods,includingkeyword-basedtechniques,similaritymeasures,andgraph-basedalgorithms.Whilethesemethodshaveshownpromisingresults,theyoftensufferfromlimitedcoverage,lackofsemanticunderstanding,orinabilitytohandlenoisyorincompletedata.Toaddresstheselimitations,thisresearchproposesamethodthateffectivelyintegratesentitysemanticknowledgeintotheexpansionprocess. 3.Methodology: Theproposedentitysetexpansionmethodconsistsofthefollowingkeysteps: 3.1EntitySemanticKnowledgeExtraction: Toincorporateentitysemanticknowledge,weextractrelevantinformationfromexistingresourcessuchasontologies,KnowledgeGraphs(KGs),andsemanticwebdata.Thisinvolvesleveragingtechniqueslikenamedentityrecognition,entitydisambiguation,andontologyalignmenttoensureaccurateandcomprehensiverepresentationofentitiesandtheirrelationships. 3.2RepresentationLearning: Next,weemployrepresentationlearningtechniques,suchaswordembeddingsorgraph-basedembeddings,toencodetheextractedentitysemanticknowledgeintoacompactandmeaningfulrepresentation.Thisstepensuresthatallrelevantinformationaboutentitiesandtheirrelationshipsiscapturedinaformsuitableforsubsequentanalysis. 3.3SimilarityEstimation: Basedonthelearnedrepresentations,wecalculatethesimilaritybetweentheentitiesinthegivenentitysetandotherentitiesfoundintheexternalknowledgesources.Varioussimilaritymeasures,suchascosinesimilarityorgraphsimilarity,canbeemployedtoquantifythesema