预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种基于Kalman滤波的环形模板匹配相关跟踪算法(英文) ACircularTemplateMatchingCorrelationTrackingAlgorithmbasedonKalmanFilter Abstract: Thecirculartemplatematchingisawidelyusedmethodfortrackinganobjectinvideostreams.However,itissensitivetoocclusion,deformation,andilluminationchanges.Toovercomethesedrawbacks,acirculartemplatematchingcorrelationtrackingalgorithmbasedontheKalmanfilterisproposed.ThealgorithmusestheKalmanfiltertopredicttheobject'spositionandvelocity,andupdatesthetemplateduringtracking.Experimentalresultsshowthattheproposedalgorithmoutperformsexistingmethodsintermsofaccuracyandrobustness. Introduction: Objecttrackingisanimportanttaskincomputervision.Ithasvariousapplicationssuchassurveillance,robotics,andaugmentedreality.Templatematchingisapopularmethodforobjecttracking.However,traditionaltemplatematchingmethodsaresensitivetoocclusion,deformation,andilluminationchanges. Circulartemplatematchingisarobusttechniquefortargettrackingbymodelingobjectsascircles.Thecirculartemplatematchingalgorithmiscomputationallyefficient,makingitsuitableforreal-timetrackingapplications.However,circulartemplatematchingsuffersfromfalsealarms,especially,whentheobjectisoccludedorwhenilluminationchangesoccur.Therefore,itisnecessarytodeveloparobustcorrelationtrackingalgorithmbasedonthecirculartemplatematchingtechnique. ThispaperproposesanovelcirculartemplatematchingcorrelationtrackingalgorithmbasedontheKalmanfilter.Incontrasttotraditionaltemplatematchingmethods,thisalgorithmusestheKalmanfiltertoestimateobjectpositionandvelocity,andupdatesthetemplateaccordingly.TheKalmanfilterincreasesthestabilityandreliabilityofthetrackingalgorithmbypredictingthenextpositionandvelocityoftheobject. Therestofthepaperisorganizedasfollows.Section2describestheKalmanfilteranditsoperation.Section3presentstheproposedcirculartemplatematchingcorrelationtrackingalgorithmbasedontheKalmanfilter.InSection4,wepresenttheresultsoftheexperiments,andSection5concludesthepaper. KalmanFilter: TheKalmanfilterisawidelyusedalgorithmforestimatingth