预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

无约束优化问题的修正PRP共轭梯度法(英文) Unconstrainedoptimizationproblemsarecommonlyencounteredinvariousfieldssuchasmachinelearning,engineeringandfinance.Thegoaloftheseproblemsistofindtheminimumofagivenobjectivefunctionintheabsenceofanyconstraintsonthedecisionvariables.Theproblemcanbeapproachedusingvariousmethodssuchasgradientdescent,Newton'smethod,andconjugategradientmethods.Inthispaper,wefocusontheconjugategradientmethod,specificallythecorrectedPRP(Polak-Ribiére-Polyak)conjugategradientmethod,whichisaniterativealgorithmforsolvingunconstrainedoptimizationproblems. Theconjugategradientmethodisapopularoptimizationtechniqueknownforitsefficiencyinsolvinglinearsystemsandquadraticoptimizationproblems.Thismethodhasbeenextendedtononlinearoptimizationproblems,wherethedirectionofdescentisdeterminedbyaconjugategradientsearchdirection.ThecorrectedPRPconjugategradientmethodisanextensionofthePRPconjugategradientmethod,whichimprovesitsconvergenceperformance.ThePRPmethod(Polak-Ribiére)isawidelyusedconjugategradientmethod,whichusesthepreviousgradientinformationtocomputetheconjugategradientsearchdirection.However,thePRPmethodmayconvergeslowlyorevendivergeforcertaintypesofobjectivefunctions.ThecorrectedPRPmethodaddressesthisissuebyaddingascalingfactortothesearchdirection,leadingtofasterconvergencerates. ThecorrectedPRPconjugategradientmethodcanbedescribedasfollows:givenaninitialpointx₀,computethegradientg₀oftheobjectivefunctionf(x)atx₀.Thensetd₀=-g₀andα=1.Ateachiterationk,computethestepsizeαkusingalinesearchalgorithm,whichminimizesf(x)alongthesearchdirectiondk.Thenupdatexk,gk,anddkasfollows: αk=argminα≥0f(xk+αdk) xk+1=xk+αkdk gk+1=∇f(xk+1) βk+1=(gk+1-gk)·gk+1/||gk||² dk+1=-gk+1+βk+1(dk-||gk+1||²/||gk||²dk) where·denotesthedotproductand||.||denotestheEuclideannorm. ThecorrectedPRPmethodusestheparameterβk+1toscalethepreviousconjugatesearchdirection(dk)toimprovetheconvergencerate.Whenβk+1isnegative,themethodfallsbacktotheclassicalPRPmethodforwhichβk+1issettozero.ItcanbeshownthatthecorrectedPRPmethodhasa