预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

区间Kalman滤波器及其在GPSINS组合导航系统中的应用(英文) Introduction: Inmodernnavigationsystems,theintegrationofGlobalPositioningSystem(GPS)andInertialNavigationSystem(INS)havebecomeanattractiveoption.Thisintegrationcanimprovetheaccuracyandreliabilityofthenavigationsystem,especiallyinsituationswhereGPSsignalsmaybeblockedordegraded.However,themajorchallengeinintegratingthesetwosystemsistodevelopareliablefilteringalgorithmthatcanaccuratelyestimatetheposition,velocity,andattitudeofthenavigationsystemundervariousoperatingconditions.Inthispaper,wepresenttheIntervalKalmanFilteranditsapplicationinGPS-INSintegratednavigationsystem. IntervalKalmanFilter: TheIntervalKalmanFilterisastateestimationalgorithmthatwasfirstintroducedbyJaulinetal.in2001.ItisanextensionofthelinearKalmanFilterandisdesignedtohandlenon-linearmeasurementmodelsanduncertainnoises.ThebasicideaofIntervalKalmanFilteristorepresenttheuncertainparametersofthemeasurementandstatemodelsasintervals,andthentopropagatetheseintervalsthroughthefilterrecursion.Thisallowsustoobtainanestimatorthatgivesaguaranteedboundingintervalforthestateofthesystem. InIntervalKalmanFilter,theinterval-valuedmeasurementmodelisrepresentedas: y=h(x)±δ whereyisthemeasurementvector,xisthestatevector,h(x)isthenon-linearmeasurementfunction,andδistheintervalnoise.Thestateestimationisperformedbypropagatingtheintervalnoisethroughthefilterrecursion,whichconsistsofthepredictorandupdatersteps.Thepredictorsteppredictsthestateintervalbasedonthesystemdynamicsandthepreviousstateinterval.Theupdaterstepupdatesthestateintervalbasedonthemeasurementinterval. ApplicationinGPS-INSIntegratedNavigationSystem: GPSandINSbothhavetheirownstrengthsandweaknessesintermsofaccuracyandreliability.GPSprovidesaccuratepositionandvelocityinformation,butitmaybeaffectedbysignalblockageormultipathpropagation.INSprovidesreliablemeasurementoftheattitudeandvelocity,butitspositionestimationmaydriftovertimeduetosensorerrorsandinitialpositioningerrors.Therefore,theintegrationofGPSandINScanimprovetheaccuracya