预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共42页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高数导数的概念高数导数的概念在许多实际问题中,需要从数量上研究变量的 变化速度。如物体的运动速度,电流强度,线密度,比热,化学反应速度及生物繁殖率等,所有这些在数学上都可归结为函数的变化率问题,即导数。导数和微分是继连续性之后,函数研究的进一步 深化。导数反映的是因变量相对于自变量变化的快慢程度和增减情况,而微分则是指明当自变量有微小变化时,函数大体上变化多少。问题的提出一、引出导数概念的两个实例两个问题的共性:二、导数的定义★注意:★函数在一点的导数是一个局部性概念,它反映了函数在该点处的变化快慢,而与临近点是否可导无关。存在仅在某一点可导,而在其余点不可导的函数。三、由定义求导数例2例3例4例5四、左、右导数★例6五、导数的几何意义与物理意义例72.物理意义例7.问曲线六、可导与连续的关系在点★例如,例如,七、小结思考与练习2.设5.设作业牛顿(1642–1727)莱布尼兹(1646–1716),。,。,。