预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种数据驱动的动态新型流行病传播率的提出及其在2019-nCoV疫情中的应用(英文) Title:Data-drivenApproachtoDynamicNovelCoronavirus(2019-nCoV)TransmissionRateanditsApplicationinthe2019-nCoVPandemic Introduction Theoutbreakofthenovelcoronavirus(2019-nCoV)inWuhan,China,presentedanurgentneedforreliableandeffectivemeanstopredictandcontrolthetransmissionrateofthevirus.Inrecentyears,theadvancementindata-drivenmodelingtechniqueshaveprovidedawaytostudyandunderstandthespreadofinfectiousdiseases.Thispaperaimstoproposeadata-drivenapproachtodynamicallymodelandpredictthetransmissionrateof2019-nCoV,andexploreitsapplicationintheongoing2019-nCoVpandemic. Methodology Toascertainanaccuratemeasureofthetransmissionrateof2019-nCoV,adata-drivenapproachcanleveragemultipledatasources,suchasconfirmedcases,testingefforts,epidemiologicalstatistics,populationdensity,mobilitypatterns,andenvironmentalfactors.Theproposedmethodologyincorporatesmachinelearningalgorithms,statisticalmodeling,andtime-seriesanalysistoidentifypatternsandrelationships,thusenablingdynamicpredictionsofthetransmissionrate. DataCollectionandPreprocessing Toimplementthisapproach,acomprehensivedatacollectionofrelevantvariablesisessential.Dataonconfirmedcasesshouldbeacquiredfromreliablesources,suchasnationalandlocalhealthagencies,withinformationonage,gender,dateofreporting,andgeographicallocation.Additionally,dataonmobilitypatternscanbecollectedthroughmobilephonedata,transportnetworks,andsocialmediaplatforms.Environmentalfactors,suchastemperatureandhumidity,shouldalsobeconsidered.Thecollecteddatashouldthenbepreprocessedtoremoveoutliers,handlemissingvalues,andnormalizethevariablesforanalysis. ModelingandPrediction Oncethedataiscollectedandpreprocessed,variousmodelingandpredictiontechniquescanbeemployed.Machinelearningalgorithms,suchassupportvectormachines,randomforests,andneuralnetworks,canbeappliedtoidentifypatternsandrelationshipsbetweendifferentvariables.Additionally,statisticalmodelingtechniques,suchastime-seriesanalysisandcompartmentalmodels(e.g.,SEIRmodel),can