预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种多运动目标检测方法在FPGA上的实现 Abstract Multipleobjectdetectionisacriticalareaincomputervisionandimageprocessing.Asdeeplearningalgorithmscontinuetoadvance,objectdetectionaccuracyhasgreatlyimproved.However,thevastmajorityofthesealgorithmsrequiremassivecomputingresourcesandhighinferencelatency.ThispaperpresentsanovelmethodformultipleobjectdetectiononFPGA,whichenableshigh-speed,low-latencyobjectdetection.TheimplementationoftheproposedmethodwasachievedontheZynq-7000SoCdevelopmentboard,andtheexperimentalresultsshowedthattheproposedmethodsignificantlyimprovesthedetectionefficiencyandreduceslatencycomparedwithtraditionalmethods. Introduction Objectdetectionisacrucialtaskincomputervisionandimageprocessing.Recentadvancementsindeeplearninghavesignificantlyimprovedtheaccuracyofobjectdetectionalgorithms.However,mostoftheseapproachesrequiremassiveamountofcomputingresourcesandhighinferencelatency.Toaddresstheseissues,hardwareaccelerationtechniqueshavebeenappliedinobjectdetection. FPGAisapopularhardwareacceleratorthatsupportsparallelprocessingandlow-latencycomputation.Inthispaper,weproposeamultipleobjectdetectionmethodimplementedonFPGA.TheproposedmethodusesamodifiedYOLOv4-tinynetworkforobjectdetectionandoptimizationtechniquestoreducecomputationcomplexity.Thegoalistoimprovedetectionaccuracy,reducecomputationtime,andlowerlatency. Methodology Theproposedmethodconsistsofmultiplestages:inputdatapreprocessing,modifiedYOLOv4-tinynetwork,non-maximumsuppression,andpost-processing. InputDataPreprocessing Theinputdataispreprocessedtoreducetheamountofcomputationrequired.First,animageisresizedto416x416andconvertedtoYOLOformat.Next,theimageisdividedinto13x13grids,andeachgridpredictsfiveboundingboxes. YOLOv4-tinyNetwork Forobjectdetection,weuseamodifiedversionoftheYOLOv4-tinynetwork,whichhasfewerconvolutionlayersandasmallernumberoffiltersthantheoriginalnetwork.Themodifiednetworkconsistsofeightconvolutionallayers,followedbytwofullyconnectedlayersandasoftmaxactivationlayer.Thefinallayerofthenetworkpredictso