预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Poisson-Lindley回归模型基于EM算法的诊断分析(英文) Title:DiagnosticAnalysisofPoisson-LindleyRegressionModelbasedonEMAlgorithm Abstract: ThePoisson-Lindleyregressionmodelisanimportantstatisticaltoolusedinvariousfieldsformodelingcountdatawithover-dispersion.TheEM(Expectation-Maximization)algorithmiscommonlyemployedforestimatingtheparametersofthismodel.However,accuratediagnosisofthemodel'sgoodness-of-fitandtheidentificationofpotentialinfluentialoutliersarecrucialforensuringreliableinference.Inthispaper,weexplorethediagnosticanalysisofthePoisson-LindleyregressionmodelbasedontheEMalgorithm. 1.Introduction: Countdataoftenexhibitover-dispersion,meaningthatthevarianceislargerthanthemean,violatingtheassumptionsoftheclassicalPoissonregressionmodel.ThePoisson-Lindleyregressionmodelisaflexiblealternativethatincorporatesanadditionalcomponenttoaccountforover-dispersion.TheEMalgorithmiswidelyusedforparameterestimationinthismodel.However,itisimportanttoassessthemodel'sadequacyandidentifyinfluentialoutliersbeforedrawinganyconclusionsfromtheanalysis. 2.ThePoisson-LindleyRegressionModel: ThePoisson-LindleyregressionmodelisdefinedbyincorporatingaLindleycomponentwithameanparameterintothePoissonmodel.Itcanbewrittenasatwo-partmodel,wherethefirstpartmodelstheprobabilityofobservingazerocount,andthesecondpartmodelsthecountdistributionofpositiveobservations.TheEMalgorithmisusedtoestimatetheparametersofthismodelbyiterativelymaximizingthelikelihoodfunction. 3.DiagnosticAnalysis: 3.1.Goodness-of-fitTest: ToassesstheadequacyofthePoisson-Lindleyregressionmodel,variousgoodness-of-fittestscanbeemployed.ThemostcommonlyusedtestsincludethePearsonchi-squaretest,thedeviancetest,andthelikelihoodratiotest.Thesetestscomparetheobservedandexpectedcountstoevaluateifthemodelfitsthedatawell. 3.2.ResidualAnalysis: Residualanalysisisapowerfultoolfordetectingpotentialoutliersandassessingthemodel'sassumptions.Differenttypesofresidualscanbecalculated,suchasPearsonresiduals,devianceresiduals,andstandardizedresiduals.Theseresidualsare