预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

Keccak类非线性变换的置换性质研究 Title:ResearchonthePermutationPropertyofKeccak'sNonlinearTransformation Introduction: KeccakisafamilyofcryptographichashfunctionsdesignedbyGuidoBertoni,JoanDaemen,MichaëlPeeters,andGillesVanAssche.ItwaschosenasthewinningcandidatefortheSHA-3competitionheldbytheNationalInstituteofStandardsandTechnology(NIST)in2012.OneimportantcharacteristicofKeccakisitsnonlineartransformation,whichexhibitsapermutationproperty.ThispaperaimstodelveintothepermutationpropertyofKeccak'snonlineartransformation,exploringitssignificanceandimplicationsinthefieldofcryptography. 1.OverviewofKeccak'sNonlinearTransformation: Keccak'snonlineartransformationisappliedwithintheroundfunctionofthehashfunctionduringthehashcomputationprocess.Itinvolvesseveraloperations,includingtheapplicationofthetheta,rho,pi,andchioperations.Theseoperationsensurestrongdiffusionandconfusionwithinthedata. 2.ThePermutationProperty: ThepermutationpropertyofKeccak'snonlineartransformationreferstothefactthatdifferentinputstatesalwaysleadtodifferentoutputstates.Thispropertyiscrucialinpreventinganattackerfromdeducinganyinformationabouttheinputdatabasedonthehashvalue.Itguaranteesthatthehashfunctionisresistanttopreimageattacks,secondpreimageattacks,andcollisionattacks. 3.ConstructionandAnalysisofthePermutationProperty: Thissectiondelvesdeeperintotheconstructionandanalysisofthepermutationproperty.Itexploresthedifferentoperationsinvolved,suchastheta,rho,pi,andchi,andtheirindividualcontributionstoachievingthepermutationproperty.Mathematicalformulationsandproofsarepresentedtoprovideacomprehensiveunderstandingofthemechanismsbehindthenonlinearityandpermutationcharacteristics. 4.StrengthsandAdvantages: ThepermutationpropertyofKeccak'snonlineartransformationoffersseveralstrengthsandadvantages.Firstly,itprovidesahighlevelofsecuritybyensuringthatnoinformationabouttheinputdatacanbeinferredfromthehashvalue.Secondly,itmakesKeccakhighlyresistanttovarioustypesofattacks,includingdifferentialattacks,linearattacks,andalgebraicat