预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

7.3多边形及其内角和 7.3.1多边形 [教学目标] 1.了解多边形及有关概念,理解正多边形及其有关概念. 2.区别凸多边形与凹多边形. [教学重点、难点] 1.重点: (1)了解多边形及其有关概念,理解正多边形及其有关概念. (2)区别凸多边形和凹多边形. 2.难点: 多边形定义的准确理解. [教学过程] 一、新课讲授 投影:图形见课本P84图7.3一l. 你能从投影里找出几个由一些线段围成的图形吗? 上面三图中让同学边看、边议. 在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性? (1)它们在同一平面内. (2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的. 这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢? 提问:三角形的定义. 你能仿照三角形的定义给多边形定义吗? 1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形. 如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.) 2.多边形的边、顶点、内角和外角. 多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 3.多边形的对角线 连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线. 让学生画出五边形的所有对角线. 4.凸多边形与凹多边形 看投影:图形见课本P85.7.3—6. 在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形. 5.正多边形 由正方形的特征出发,得出正多边形的概念. 各个角都相等,各条边都相等的多边形叫做正多边形. 二、课堂练习 课本P86练习1.2. 三、课堂小结 引导学生总结本节课的相关概念. 四、课后作业 课本P90第1题. 备用题: 一、判断题. 1.由四条线段首尾顺次相接组成的图形叫四边形.() 2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.() 3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.() 4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.() 二、填空题. 1.连接多边形的线段,叫做多边形的对角线. 2.多边形的任何所在的直线,整个多边形都在这条直线的,这样的多边形叫凸多边形. 3.各个角,各条边的多边形,叫正多边形. 三、解答题. 1.画出图(1)中的六边形ABCDEF的所有对角线. 2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系? 3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系? 4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?