预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

因子分析 前言 因子分析方法的实际作用已为广大实际工作所证实。但并非每次运用它都是成功的。有时,特别是针对多维变量所做的因子分析,难以有清晰的解释。因此,有的实际工作者开始怀疑因子分析方法的科学性。但同时,不同的人针对相同的数据所做的因子分析。解释其结果却又不尽相同。有的人通过因子分析能给出问题近乎完美的答案。于是,又有人称因子分析是一种“艺术”因子分析因此也变得神秘起来了。因子分析到底是艺术还是科学呢? 因子分析的统计思想 在实践中,往往收集到的数据是多指标的。各指标之间通常不是独立的,或多或少存在着一定程度的关系。因子分析的目的是通过少数几个变量去描述这众多变量见的协方差关系。这少数几个变量是潜在的,但不能观察的。我们称之为因子。 1以相关为基础 在所收集到的众多变量中,必定存在某些是高度相关的,把这些高度相关的变量组成各组。这样同一组内变量具有高度相关,而与其他的各组变量却只有较小的相关或是不相关。这些组内高度相关的变量可以设想是一个共同的东西在影响着它们而导致高度相关。这个共同的东西称之为公共因子。如前所述,这些公共因子是潜在但不能观测的。 2通过协方差来实现 因子分析是以相关为基础,从协方差或相关阵开始把大部分变异归结为少数几个公共因子所为。把剩余的部分称为特殊因子。 3作用:寻求基本结构、数据化简 通过因子分析,可以用几个较小的有实际意义的因子来反映原来数据的基本结构。例如: 例1:Linden对二战以来奥运会十项全能比赛的得分作了研究,将100米、跳远、铅球、跳高、400米、110米栏、铁饼、撑杆跳、标枪、1500米的成绩归结到短跑速度、爆发性臂力、爆发性腿力、耐力四个方面。 例2:公司面试,从简历、外貌、专业能力、讨人喜欢的能力、自信心、洞察力、诚实、理解力等15个方面进行打分,最后归结外申请者的外露能力、受欢迎程度、工作经验、专业能力这四个方面 通过因子分析,可以用少数几个因子代替原来的变量做回归分析÷据类分析等。 正交因子模型分析 1模型的直观描述 既然因子分析的目的是用少数几个称之为公共因子的因子去描述众多变量间协方差关系。巡着这一思路,针对每一个具体的变量。去掉共同的东西剩余的变异部分由两个部分组成,一个是公共因子的贡献的部分,另一个就是剩余的部分,即特殊因子。须提醒一下,这里特殊因子与公共因子不应相关。直观上,若公共因子与特殊因子相关则说明特殊因子中还可以抽出共同的东西到公共部分。由此可见模型中公共因子与特殊因子是不相关的。 2正交因子模型的数学表达式 考虑个成分的随机观测向量。因子模型要求线性相依,其中有m个公共因子f1f2…..fm和特殊因子组成。具体如下: 如果fi与fj相互独立(i≠j),则称该因子模型为正交因子模型。正交因子模型具有如下特性: x的方差可表示为: (1)hi2是m个公共因子对第i个变量的贡献,称为第i个共同度(communality)或共性方差,公因子方差(commonvariance) (2)δi称为特殊方差(specificvariance),是不能由公共因子解释的部分 因子负载aij是随机变量xi与公共因子fj的相关系数。 称gj2为公共因子fj对x的“贡献”,是衡量公共因子fj重要性的一个指标。 3因子分析的步骤 输入原始数据xn*p,计算均值和方差,进行标准化计算 求样本相关系数矩阵R=(rij)p*p 求相关系数矩阵的特征根λi(λ1,λ2,…,λp>0)和相应的标准正交的特征向量B,求出负载矩阵,负载矩阵还有其他的求法: 最小二乘法 极大似然估计法 主轴因子法 a法因子提取法 映象分析法 确定公共因子数: 由特征根大于1所对应的长度为以的特征响亮,来计算公共因子的负载 碎石准则:把特征更从大到小绘在坐标图上,把特征根减少速度变缓的特征根都删掉。 计算公共因子的共性方差hi2 对载荷矩阵进行旋转,以求能更好地解释公共因子 对公共因子作出专业性的解释 4正交因子模型的几点解释 1、“正交因子模型”中“正交”一词。意味着各个公共因子间是不相关的。这一点是来自于因子分析初始思想。在“正交因子模型”统计思想中曾提到:“组内高度相关”而“组间相关性很小”这表明各个组受制于不同的因子。到底小到什么程度才算“小”呢?这是个模糊的概念,在实际应用中不易确定。于是表现在模型中就把它理想化为不相关即公共因子间是独立的。 2、因子分析不易解释的原因 许多实际工作者在按正交因子模型做完因子分析后,总会得到摸棱两可的解释。其根本原因出在“正交”上。正交因子模型是个理想化的模型。它要求公共因子间不相关,然而现实问题中,这些公共因子并非完全不相关的(可能相关性很小)。这样就出现了现实问题同模型间的矛盾。依因子分析模型把事实上存在关系的变量“强行”让它们不相关。