预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共16页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

电磁场与电磁波实验指导书 目录 实验一电磁波感应器的设计与制作 实验二电磁波传播特性实验 实验三电磁波的极化实验 实验四天线方向图测量实验 实验一电磁波感应器的设计与制作 一、预习要求 1、什么是法拉第电磁感应定律? 2、什么是电偶极子? 3、了解线天线基本结构及其特性。 二、实验目的 1、认识时变电磁场,理解电磁感应的原理和作用。 2、通过电磁感应装置的设计,初步了解天线的特性及基本结构。 3、理解电磁波辐射原理。 三、实验原理 随时间变化的电场要在空间产生磁场,同样,随时间变化的磁场也要在空间产生电场。电场和磁场构成了统一的电磁场的两个不可分割的部分。能够辐射电磁波的装置称为天线,用功率信号发生器作为发射源,通过发射天线产生电磁波。 图1电磁感应装置 如果将另一付天线置于电磁波中,就能在天线体上感生高频电流,我们可以称之为接收天线,接收天线离发射天线越近,电磁波功率越强,感应电动势越大。如果用小功率的白炽灯泡接入天线馈电点,能量足够时就可使白炽灯发光。接收天线和白炽灯构成一个完整的电磁感应装置,如图1所示。 电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等,如图2所示。 图2接收天线 本实验重点介绍其中的一种─—半波天线。 半波天线又称半波振子,是对称天线的一种最简单的模式。对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。这种天线是最通用的天线型式之一,又称为偶极子天线。而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。 半波振子因其一臂长度为,全长为半波长而得名。其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子()的远区场强有以下关系式: 式中,为方向性函数,对称振子归一化方向性函数为: 其中是的最大值。 由上式可画出半波振子的方向图如图3所示。 图3半波振子的方向图 半波振子方向函数与无关,故在H面上的方向图是以振子为中心的一个圆,即为全方向性的方向图。在E面的方向图为8字形,最大辐射方向为,且只要一臂长度不超过,辐射的最大值始终在方向上;若继续增大L,辐射的最大方向将偏离方向。 四、实验内容与步骤 1、打开功率信号发生器电源开关,Signal灯亮,机器工作正常,按下Tx按钮,观察功率指示表有一定偏转,此时Standby灯亮,说明发射正常。 2、用金属丝制作天线体,用螺丝固定于感应灯板(或电流表检波板)两端,并安放到测试支架上,调节感应板的角度,使其与发射天线的极化方向一致。调节测试支架滑块到最右端,按下功率信号发生器上Tx按钮,同时移动测试支架滑块,靠近发射天线,直到小灯刚刚发光时,记录下滑块与发射天线的距离。 3、改变天线振子的长度,重复上面过程,记录数据。 4、选用其它天线形式制作感应器,重复上面过程,记录数据。 次数天线形式天线长度接收距离1234 五、注意事项 1、按下Tx按钮时,若Alarm红色告警灯亮,应立即停止发射,检查电缆线与发射天线接口是否旋紧,其余接口是否用封闭帽盖上,Output接口与电缆是否接好,或请老师检查。否则会损坏机器。 2、测试感应器时,不能将感应灯靠近发射天线的距离太小,否则会烧毁感应灯。(置于20cm以外,或视感应灯亮度而定)。 3、尽量减少按下Tx按钮的时间,以免影响其它小组的测试准确性。 4、测试时尽量避免人员走动,以免人体反射影响测试结果。 六、报告要求 1、按照标准实验报告的格式和内容完成实验报告。 2、制作两种以上天线,观察接收效果。画出天线形状,记录接收距离。 3、对实验中的现象分析讨论。 4、提出改进意见及建议。 七、接收天线参考形状 实验二电磁波传播特性实验 一、预习要求 1、什么是迈克尔逊干涉原理?它在实验中有哪些应用? 2、驻波的产生原理及其特性。 二、实验目的 1、学习了解电磁波的空间传播特性。 2、通过对电磁波波长、波幅、波节、驻波的测量,进一步认识和了解电磁波。 三、实验原理 变化的电场和磁场在空间的传播称为电磁波。几列不同频率的电磁波在同一媒质中传播时,几列波可以保持各自的特点(波长、波幅、频率、传播方向等),在同时通过媒质时,在几列波相遇或叠加的区域内,任一点的振动为各个波单独在该点产生振动的合成。而当两个频率相同、振动方向相同、相位差恒定的波源所发出的波叠加时,在空间总会有一些点振动始终加强,而另一些点振动始终减