预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共15页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第三章螺旋桨基础理论及水动力特性 关于使用螺旋桨作为船舶推进器的思想很早就已确立,各国发明家先后提出过很多螺旋推进器的设计。在长期的实践过程中,螺旋桨的形状不断改善。自十九世纪后期,各国科学家与工程师提出多种关于推进器的理论,早期的推进器理论大致可分为两派。其中一派认为:螺旋桨之推力乃因其工作时使水产生动量变化所致,所以可通过水之动量变更率来计算推力,此类理论可称为动量理论。另一派则注重螺旋桨每一叶元体所受之力,据以计算整个螺旋桨的推力和转矩,此类理论可称为叶元体理论。它们彼此不相关联,又各能自圆其说,对于解释螺旋桨性能各有其便利处,然亦各有其缺点。 其后,流体力学中的机翼理论应用于螺旋桨,解释叶元体的受力与水之速度变更关系,将上述两派理论联系起来而发展成螺旋桨环流理论。从环流理论模型的建立至今已有六十多年的历史,在不断发展的基础上已日趋完善。尤其近二十年来,由于电子计算机的发展和应用,使繁复的理论计算得以实现,并促使其不断完善。 虽然动量理论中忽略的因素过多,所得到的结果与实际情况有一定距离,但这个理论能简略地说明推进器产生推力的原因,某些结论有一定的实际意义,故在本章中先对此种理论作必要介绍,再用螺旋桨环流理论的观点分析作用在桨叶上的力和力矩,并阐明螺旋桨工作的水动力特性。至于对环流理论的进一步探讨,将在第十二章中再行介绍。 §3-1理想推进器理论 一、理想推进器的概念和力学模型 推进器一般都是依靠拨水向后来产生推力的,而水流受到推进器的作用获得与推力方向相反的附加速度(通常称为诱导速度)。显然推进器的作用力与其所形成的水流情况密切有关。因而我们可以应用流体力学中的动量定理,研究推进器所形成的流动图案来求得它的水动力性能。为了使问题简单起见,假定: (1)推进器为一轴向尺度趋于零,水可自由通过的盘,此盘可以拨水向后称为鼓动盘(具有吸收外来功率并推水向后的功能)。 (2)水流速度和压力在盘面上均匀分布。 (3)水为不可压缩的理想流体。 根据这些假定而得到的推进器理论,称为理想推进器理论。它可用于螺旋桨、明轮、喷水推进器等,差别仅在于推进器区域内的水流断面的取法不同。例如,对于螺旋桨而言,其水流断面为盘面,对于明轮而言,其水流断面为桨板的浸水板面。 设推进器在无限的静止流体中以速度VA前进,为了获得稳定的流动图案,我们应用运动转换原理,即认为推进器是固定的,而水流自无穷远前方以速度VA流向推进器(鼓动盘)。图3-1(a)表示包围着推进器的流管。由于推进器的作用,在流管中水质点的速度与流管外不同,在流管以外的水流速度和压力处处相等,均为VA和p0,故流管的边界ABC和A1BlC1是分界面。现在讨论流管内水流轴向速度和压力的分布情况。参阅图3-1(a),在推进器的远前方(AA1剖面)压力为p0、流速为VA。离盘面愈近,由于推进器的抽吸作用,水流的速度愈大而压力下降,到盘面(BB1剖面)的紧前方时,水流的速度为VA+ua1而压力降为p1。当水流经过盘面时,压力突增为(这一压力突变是由于推进器的作用而产生),而水流速度仍保持连续变化。水流离开盘面以后,速度将继续增大而压力下降。到推进器的远后方(CC1剖面)处,速度将达到最大值VA+ua,而压力回复至p0,图3-1(b)和3-1(c)分别表示流管中水流速度和压力的分布情况。流管内水流轴向速度的增加使流管截面形成收缩,而流管内外的压力差由其边界面的曲度来支持。由于假定推进器在无限深广的流体中运动,故流管以外两端无限远处的压力图3-1 和水流速度可视为不变。 二、理想推进器的推力和诱导速度 根据以上的分析,便可以进一步决定推进器所产生的推力和水流速度之间的关系。 应用动量定理可以求出推进器的推力。单位时间内流过推进器盘面(面积为A0)的流体质量为m=ρA0(VA+ua1),自流管远前方AA1断面流入的动量为ρA0(VA+ua1)VA,而在远后方CC1断面处流出的动量为ρA0(VA+ua1)(VA+ua),故在单位时间内水流获得的动量增值为: ρA0(VA+ua1)(VA+ua)-ρA0(VA+ua1)VA=ρA0(VA+ua1)ua 根据动量定理,作用在流体上的力等于单位时间内流体动量的增量。而流体的反作用力即为推力,故推进器所产生的推力Ti为: Ti=mua=ρA0(VA+ua1)ua(3-1) 以上各式中,ρ为流体的密度。 为了寻求盘面处速度增量ua1与无限远后方速度增量ua的关系,在推进器盘面前和盘面后分别应用伯努利方程。在盘面远前方和紧靠盘面处有下列关系式,即 p0+ρV=p1+ρ(VA+ua1)2 故 p1=p0+ρV-ρ(VA+ua1)2(3-2) 而在盘面远后方和紧靠盘面处有: p0+ρ(VA+ua)2=+ρ(VA+ua1)2 故=p0+ρ(VA+ua)2