预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共11页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: 2.射影公式:向量在上的射影为 3.直线的法向量为,方向向量为 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行两线的方向向量平行 线面平行线的方向向量与面的法向量垂直 面面平行两面的法向量平行 2.垂直关系 线线垂直(共面与异面)两线的方向向量垂直 线面垂直线与面的法向量平行 面面垂直两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点与的 距离为 2.点线距离 求点到直线的距离: 方法:在直线上取一点, 则向量在法向量上的射影=即为点到的距离. 3.点面距离 求点到平面的距离: 方法:在平面上去一点,得向量, 计算平面的法向量, 计算在上的射影,即为点到面的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角. 实例分析 一、运用法向量求空间角 α n A 向量法求空间两条异面直线a,b所成角θ,只要在两条异面直线a,b上各任取一个向量,则角<>=θ或π-θ,因为θ是锐角,所以cosθ=,不需要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为=(x,y,1),则直线AB和平面α所成的角θ的正弦值为 sinθ=cos(-θ)=|cos<,>|= 2、运用法向量求二面角 设二面角的两个面的法向量为,则<>或π-<>是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<>是所求,还是π-<>是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a、b的公共法向量为,在a、b上任取一点A、B,则异面直线a、b的距离 d=AB·cos∠BAA'= 略证:如图,EF为a、b的公垂线段,a'为过F与a平行的直线, 在a、b上任取一点A、B,过A作AA'EF,交a'于A', 则,所以∠BAA'=<>(或其补角) ∴异面直线a、b的距离d=AB·cos∠BAA'=* 其中,的坐标可利用a、b上的任一向量(或图中的),及的定义得 =1\*GB3①解方程组可得。 2、求点到面的距离 求A点到平面α的距离,设平面α的法向量法为,在α内任取一点B,则A点到平面α的距离为d=,的坐标由与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述,若方程组无解,则法向量与XOY平面平行,此时可改设,下同)。 3、求直线到与直线平行的平面的距离 求直线a到平面α的距离,设平面α的法向量法为,在直线a上任取一点A,在平面α内任取一点B,则直线a到平面α的距离d= 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为,在平面α、β内各任取一点A、B,则平面α到平面β的距离d= 三、证明线面、面面的平行、垂直关系 设平面外的直线a和平面α、β,两个面α、β的法向量为,则 四、应用举例: 例1:如右下图,在长方体ABCD—A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分别是线段AB、BC上的点,且EB=FB=1. (1)求二面角C—DE—C1的正切值; (2)求直线EC1与FD1所成的余弦值. 解:(I)以A为原点,分别为x轴,y轴,z轴的正向建立空间直角坐标系, 则D(0,3,0)、D1(0,3,2)、E(3,0,0)、F(4,1,0)、C1(4,3,2) 于是, 设法向量与平面C1DE垂直,则有 (II)设EC1与FD1所成角为β,则 例2:如图,已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=600,PD⊥平面ABCD,PD=AD,点E为AB中点,点F为PD中点。 (1)证明平面PED⊥平面PAB; (2)求二面角P-AB-F的平面角的余弦值 证明:(1)∵面ABCD是菱形,∠DAB=600, ∴△ABD是等边三角形,又E是AB中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=