预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

山西省太原市成成中学校2024年高一数学上学期第三次月考必刷密卷(培优卷)含答案解析 一、单选题(本题共8小题,每题5分,共40分) 1、若,,,则、、大小关系为() A. B. C. D. 2、的弧度数是() A. B. C. D. 3、设,且,则等于() A.100 B. C. D. 4、如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则 A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p3 5、已知,,则的值等于() A. B. C. D. 6、若点在角的终边上,则的值为 A. B. C. D. 7、已知函数的图像过点和,则在定义域上是 A.奇函数 B.偶函数 C.减函数 D.增函数 8、设函数与的图象的交点为,则所在的区间为() A B. C. D. 二、多选题(本题共3小题,每题6分,共18分) 9、下列说法正确的是(). A.“”是“函数是奇函数”的充要条件 B. C.若、,且满足,则的最大值为 D.函数在定义域内只有一个零点 10、已知为锐角,角的终边上有一点,x轴的正半轴和以坐标原点O为圆心的单位圆的交点为N,则() A.若,则 B.劣弧的长度为 C.劣弧所对的扇形的面积为是 D. 11、已知,下列结论正确的是() A. B. C. D. 三、填空题(本题共3小题,每题5分,共15分) 12、已知,则的值是________,的值是________. 13、幂函数QUOTE的图象过点QUOTE,则QUOTE______ 14、已知是定义在R上的周期为2的奇函数,当时,,则___________. 四、解答题(本题共7小题,每题11分,共77分) 15、如图,已知四棱柱的底面是菱形,侧棱底面,是的中点,,. (1)证明:平面; (2)求直线与平面所成的角的正弦值. 16、已知为角终边上的一点 (1)求的值 (2)求的值 17、某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格(元)与时间(天)的函数关系近似满足(为正常数).该商品的日销售量(个)与时间(天)部分数据如下表所示: (天)10202530(个)110120125120已知第10天该商品的日销售收入为121元. (I)求的值; (II)给出以下二种函数模型: ①,②, 请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量与时间的关系,并求出该函数的解析式; (III)求该商品的日销售收入(元)的最小值. (函数,在区间上单调递减,在区间上单调递增.性质直接应用.) 18、2009年某市某地段商业用地价格为每亩60万元,由于土地价格持续上涨,到2021年已经上涨到每亩120万元.现给出两种地价增长方式,其中是按直线上升的地价,是按对数增长的地价,t是2009年以来经过的年数,2009年对应的t值为0 (1)求,的解析式; (2)2021年开始,国家出台“稳定土地价格”的相关调控政策,为此,该市要求2025年的地价相对于2021年上涨幅度控制在10%以内,请分析比较以上两种增长方式,确定出最合适的一种模型.(参考数据:) 19、已知函数,且. (1)求的解析式,判断并证明它的奇偶性; (2)求证:函数在上单调减函数. 20、如图,在四棱锥中,底面,,,,,是中点 (Ⅰ)证明:平面; (Ⅱ)求二面角的正弦值 21、已知函数(,)为奇函数,且相邻两对称轴间的距离为 (1)当时,求的单调递减区间; (2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域 参考答案 一、单选题(本题共8小题,每题5分,共40分) 1、答案:B 【解析】由指数函数、对数函数、正弦函数的性质把已知数与0和1比较后可得 【详解】,,,所以 故选:B 【点睛】关键点点睛:本题考查实数的大小比较,对于幂、对数、三角函数值的大小比较,如果能应用相应函数单调性的应该利用单调性比较,如果不能转化,或者是不同类型的的数,可以结合函数的性质与特殊值如0或1等比较后可得结论 2、答案:C 【解析】弧度,弧度,则弧度弧度,故选C. 3、答案:C 【解析】由,得到,再由求解. 【详解】因为, 所以, 则, 所以, 则, 解得, 故选:C 4、答案:A 【解析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据