zm二次函数图像与性质.ppt
YY****。。
亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
zm二次函数图像与性质.ppt
x议一议x例题与练习观察1函数y=-x2,y=-2x2的图像与y=-x2的图像相比,有什么共同点和不同点?1、抛物线y=ax2的顶点是原点,对称轴是y轴。思考:在同一坐标系内,抛物线y=x2与抛物线y=-x2的位置有什么关系?一般地,抛物线y=ax2与抛物线y=-ax2呢?当a>0时,在对称轴的左侧,y随着x的增大而减小。y=ax2例题与练习观察函数y=x2的图象,则下列判断中正确的是()(A)若a,b互为相反数,则x=a与x=b的函数值相等;(B)对于同一个自变量x,有两个函数值与它对应.(C)对任一个
二次函数的图像和性质.1二次函数的图像和性质.ppt
第二十二章二次函数22.1二次函数的图象和性质复习的图象和性质函数.向左平移1个单位..归纳小结强化训练
二次函数的图像与性质.2.1二次函数y=ax 2的图像与性质.ppt
义务教育课程标准实验教科书回顾知识:二次函数y=ax²+bx+c(a≠0)其图象又是什么呢?。xx二次函数y=ax2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线。抛物线例1、已知二次函数y=ax2(a≠0)的图像经过点(-2,-3).(1)求a的值,并写出这个二次函数的解析式.(2)说出这个二次函数的顶点坐标、对称轴、开口方向和图像的位置.驶向胜利的彼岸y=-2x2驶向胜利的彼岸谈收获:课本P7练习:1、2、3、4
二次函数图像性质.ppt
二次函数图像性质教学目标:1会用描点法画出二次函数的图像2会说出二次函数图像的开口方向,对称轴,顶点坐标3培养学生经历由具体到一般的探索事物的规律的过程抛物线抛物线新课讲授:讨论题2:观察所画的函数图像并进行比较,你认为函数的图像有哪些特点?归纳总结:图像的特点.例题分析:一条抛物线的形状与抛物线相同,其顶点坐标是(-1,3),写出这个抛物线的解析式.相应练习:小结:本节课主要运用了数形结合的思想方法,通过对函数图象的讨论,分析归纳出的性质:作业:教科书93页1,2
二次函数的图像与性质.ppt
二次函数y=a(x-h)2的图象和性质y=ax2+c探究抛物线与抛物线有什么关系?一般地,抛物线y=a(x-h)2有如下特点:顶点(0,0)y=a(x-h)2试一试(4)抛物线y=4(x-3)2的开口方向,对称轴是,顶点坐标是,抛物线是最点,当x=时,y有最值,其值为。抛物线与x轴交点坐标,与y轴交点坐标。如何平移:抛物线2、按下列要求求出二次函数的解析式:(1)已知抛物线y=a(x-h)2经过点(-3,2)(-1,0)求该抛物线线的解析式。用配方法把下列函数化成y=a(x-h)2的形式,并说出开口方向,