预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

正方体的表面展开图 新课程标准指出:“在探索图形的性质、图形的变换以及平面图形与空间几何体的相互转换等活动过程中,初步建立空间观念,发展几何直觉。”正方体的表面展开图,是考查学生对平面图形与空间几何体的相互转换的探索能力,能考查学生的空间想像能力,为高中学习立体几何打下良好的基础,因此,这方面的试题成为中考的命题热点。 一、正方体表面展开图的三种情况 1、正方体展开后有四个面在同一层 正方体因为有两个面必须作为底面,所以平面展开图中,最多有四个面展开后处在同一层,作为底的两个面只能处在四个面这一层的两侧,利用排列组合知识可得如下六种情况: 2、正方体展开后有三个面在同一层 有三个面在同一层,剩下的三个面分别在两侧,有如下三种情形: 3、二面三行,象楼梯;三面二行,两台阶 二、有关正方体表面展开图的中考题 例1、(04长沙)如图是一个正方体纸盒的展开图,在其中的四个正方形内标有数字1、2、3和-3,要在其余正方形内分别填上-1、-2,使得按虚线折成正方体后,相对面上的两数互为相反数,则A处应填_____ 分析:这是图⑤模型,把中间的四个正方形围起来做“前后左右”四个面,则“1和B”是“上面和下面”,显然,“2”与“A”是相对面,所以A处应填-2。 例2、(04山西临汾市)把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是() 分析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C)。 程 前 你 祝 似 锦 例3、(04山东维坊市)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________. 分析:这个展开图是图⑦的情形,题目给出“程”做底面,“似”做前面,显然,“祝”是后面,“前”和“你”是往右边翻折的,所以“前”是左面,“你”是上面。 因此,依次填:“后面”、“上面”、“左面”。 例4、(2003海南)如图是一个正方体包装盒的表面积展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C内的三个数依次为() (A)0,-2,1(B)0,1,2(C)1,0,-2(D)-2,0,1 分析:这个展开图是图⑩模型,将“0”作为底面,可得,A是上面,B与“2”是相对面,C与“-1”是相对面,所以,A为“0”,B为“-2”,C为“1”,所以选“A”。 三、巩固练习 1、(2003天津)在下列图形中(每个小四边形皆为全等的正方形),可以是一个正方体表面展开图的是() 2、(2004浙江金华)下列图形中,不是立方体表面展开图的是() 参考答案:1、C;2、C 参考文献:《走出空间,走向成功》中学生数学2004、4张芹、陈航 初三数学复习教案 复习内容:展开图 教学目的:会根据一个物体的展开图说出实物名称,或会根据实物画出它的一种展开图。并能根据展开图解决一些数学问题。 教学过程: 一、例题选讲 1、如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是() (A) (D) (C) (B) (正方体纸盒) 2、如图.把一个正方形三次对折后沿虚线剪下.则所得图形是() 3、如图,正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从M点沿正方体的表面爬到D1点,蚂蚁爬行的最短距离是() (A)(B)3(C)5(D) 4、如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是() A. 2 B. 4 C. 8 D.10 5、如图是一个正方体纸盒的展开图,在其中的四个正方形内标有数字 1、2、3和一3.要在其余正方形内分别填上-1、-2,使得按虚线折 成正方体后,相对面上的两数互为相反数,则A处应填. 6、如图①,一个无盖的正方体盒子的棱长为10厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙。(盒壁的厚度忽略不计) (1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连结AE、EC1。昆虫乙如果沿路径A→E→Cl爬行,那么可以在最短的时间内捕捉到昆虫甲。仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲。(请简要说明画法) (2)如图②,假