预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

深圳大学研究生课程论文 题目基于空间模糊聚类的图像分割优化算法 成绩 专业信息与通信工程课程名称、代码模糊数学理论 年级研一 姓名梁运恺同组人叶韩 学号21501304062150130407 时间2015/1/6 任课教师李良群 基于空间模糊聚类的图像分割优化算法 【摘要】针对传统模糊C-均值(FCM)算法抗噪性能差的问题,提出一种新的基于空间模糊聚类的图像分割优化算法。该算法通过在传统FCM算法基础上加入图像特征项中像素间的空间位置信息,解决了传统FCM对噪声敏感的问题,增强了算法的鲁棒性。实验结果表明,该算法可实现有效分割,分割效果显著优于传统FCM算法。 【关键词】图像分割;模糊聚类;FCM算法;空间位置信息; TheSpatialFuzzyClusteringOptimizationAlgorithmforImageSegmentation Abstract:Forthepooranti-noiseperformancelimitationsofthetraditionalfuzzyC-means(FCM)algorithm.Weproposedanewspatialfuzzyclusteringoptimizationalgorithmforimagesegmentation.weaddedawealthofspatialinformationbetweenpixelsintheimagefeatureitems,sothatthetraditionalFCMsensitivetonoisewassolved.Andtherobustnessofthealgorithmwasenhanced.Experimentalresultsshowthatouralgorithmcanachievetheeffectivesegmentationthenoiseimages.AndtheresultsaresignificantlybetterthanthosebytraditionalFCMimagesegmentationalgorithm. Keywords:imagesegmentation;fuzzyclustering;FCMalgorithm;spatialinformation 引言 图像分割是图像处理到图像分析的关键步骤,是进一步理解图像的基础。图像分割本质上是基于某种相似性准则对像素进行分类,在期望的分割结果中,属于同类的像素特征不仅在数值上相似,其空间位置信息也有紧密联系。数据聚类方法对图像进行分割具有直观和易于实现的特点,其中最有效的是模糊C-均值(FuzzyC-means,FCM)聚类算法。但传统的FCM算法未考虑图像的空间信息,在处理受噪声污染的图像时常会得到不理想的分割结果,因此,本文提出一种改进的FCM算法。针对传统FCM算法在分割过程中只考虑本地信息的问题,本文算法加入有影响力的特征因子,即空间位置信息。实验结果表明,本文算法可显著抑制噪声并保留实际图像的特征。 FCM聚类简介 2.1模糊集合基本知识 首先说明隶属度函数的概念。隶属度函数是表示一个对象x隶属于集合A的程度的函数,通常记做μA(x),其自变量范围是所有可能属于集合A的对象(即集合A所在空间中的所有点),取值范围是[0,1],即0<=μA(x)<=1。μA(x)=1表示x完全隶属于集合A,相当于传统集合概念上的x∈A。一个定义在空间X={x}上的隶属度函数就定义了一个模糊集合A,或者叫定义在论域X={x}上的模糊子集。对于有限个对象x1,x2,……,xn模糊集合可以表示为: (1) 有了模糊集合的概念,一个元素隶属于模糊集合就不是硬性的了,在聚类的问题中,可以把聚类生成的簇看成模糊集合,因此,每个样本点隶属于簇的隶属度就是[0,1]区间里面的值。 2.2C均值聚类 C均值聚类也称K均值聚类(K-Means),已经应用到各种领域。它的核心思想如下:算法把n个向量xj(1,2…,n)分为c个组Gi(i=1,2,…,c),并求每组的聚类中心,使得非相似性(或距离)指标的价值函数(或目标函数)达到最小。当选择欧几里德距离为组j中向量xk与相应聚类中心ci间的非相似性指标时,价值函数可定义为: (2) 这里是组I内的价值函数。这样Ji的值依赖于Gi的几何特性和ci的位置。 一般来说,可用一个通用距离函数d(xk,ci)代替组I中的向量xk,则相应的总价值函数可表示为: (3) 为简单起见,这里用欧几里德距离作为向量的非相似性指标,且总的价值函数表示为(2)式。 划分过的组一般用一个c×n的二维隶属矩阵U来定义。如果第j个数据点xj属于组i,则U中的元素uij为1;否则,该元素取0。一旦确定聚类中心