预览加载中,请您耐心等待几秒...
1/8
2/8
3/8
4/8
5/8
6/8
7/8
8/8

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

反应谱法与时程分析法在设计地震下的比较 摘要:以反应谱法与时程分析法的原理为依据,结合实际桥梁单墩模型进行抗震分析,从而得出这两种方法的异同以及它们所适用的范围,并结合它们的优缺点,优化结构动力分析方法的优化。 关键词:反应谱;时程分析;单墩模型;设计地震 0前言 在桥梁抗震计算中,早期采用简化的静力法,5O年代后发展了动力法的反应谱理论,近2O年来对重要结构物采用动力法的动态时程分析法和功率谱法进行研究也比较普遍,但目前常用的方法是线弹性反应谱法、弹塑性动力时程分析法和等效静力分析法等几种方法。其中,反应普法和时程分析法在抗震分析中运用最为广泛。 1反应谱理论 1.1反应谱法原理 单质点体系在地面运动作用下,运动方程为[18]: (1) (1)式中: —质点质量; —质点相对加速度; —质点相对速度; —质点相对位移。 根据单质点体系的振动理论,由Duhamel积分可知: (2) 对上式微分两次可得加速度(在一般情况下,阻尼比的数值很小,可略去阻尼比的乘积项),得到单质点体系的地震相对加速度反应的表达式。最后得绝对加速度的表达式为: (3) 进而得到作用在质点上的地震力为。 1.2反应普法的优缺点 反应谱法以其概念清晰、计算简单而被广泛应用,至今仍是各国规范的基本计算方法。反应谱法根据规范按四类场地土给出的设计反应谱进行计算,对于量大面广的常规桥梁,只取少数几个低阶振型就可以求得较为满意的结果,计算量少;并且反应谱法将时变动力问题转化为拟静力问题,易于为工程师接受,这些都是反应谱法的优点所在。 由于目前采用的反应谱法对结构地震力采用弹性反应谱理论,反应谱法的最大缺点是假定结构是弹性状态,原则上只适用于弹性结构体系。然而地震是一种不经常发生的偶然荷载,一般允许结构在强烈地震中进入非线性状态,弹性反应谱法不能直接使用。另外,地震反应谱失掉相位信息,经叠加得到的结构反应最大值是一个近似值,尽管可能是一个很好的近似值,但各种叠加方案都有一定的局限性,不是任何情况下都能给出满意的结果。计算结果只能给出最大反应值,而不能给出发生反应的全过程。在抗震设计中最大的内力反应是最受关注的,但相邻截面的最大反应或即使在同一截面上各个内力的最大反应发生的时刻各不相同,在结构强度或应力验算中应取发生在同一时刻的反应值,如最大弯矩相应的轴力和剪力,或最大轴力相应的弯矩和剪力等,这一点反应谱无法做到。 2时程分析理论 2.1时程分析原理 动态时程分析方法是随着强震记录的增多和计算机技术的广泛应用而发展起来的,是公认的精细分析方法。目前,大多数国家除对常用的中小跨度桥梁仍采用反应谱方法计算外,对重要、复杂、大跨度的桥梁抗震计算建议采用动态时程分析法。 动态时程分析方法能够比较准确地确定结构在地震过程中结构的内力和位移随时间的反应,并发现结构在地震时可能存在的薄弱环节和可能发生的震害,它使桥梁的抗震设计从单一的强度保证转入强度、延性(变形)的双重保证,同时使工程师更清楚结构地震力破坏的机理和正确提高桥梁抗震能力的途径。本章主要给出时程分析的理论介绍、时程分析的常用求解方法、时程分析时地震波的选取和ANSYS时程反应的典型命令流。 在地震反应中,地面振动加速度是复杂的随机函数,同时在弹塑性反应中刚度矩阵和阻尼矩阵亦随时间变化,不可能对振动方程求出解析解。对于这种有较复杂激振力,可采用逐步积分法求动力响应问题。其基本思想是把时间离散化,如把时间区间T分为的n个间隔。由初始状态t=0开始,逐步求出每个时间间隔末上的状态向量(常由位移、速度和加速度等组成)。最后求出的状态向量就是结构系统的动力响应解。在这种方法中,后次的求解是在前次解已知的条件下进行的。开始是假定t=0时的解(包括位移和速度)为已知,求出时的解,接着再以时刻的已知解计算时刻的解,如此继续下去。在方程中,是未知量,如何由前一状态推知下一状态?这可以对的变化规律给予某种假设。对于不同的假设就形成了不同的方法,如线性加速度法,Wilson-法、Newmark-β法等。 2.2Newmark-β法 基本假定 (4) (5) 式中,参数控制积分区间的起始加速度和终了加速度对速度变化过程的影响;参数则控制这两个加速度对位移变化的影响。和的调整影响积分的精度和稳定性。基本假定的实质是将动力方程在时域上离散,对时间作近似的插值化为差分格式。 计算步骤 (1)初始计算 ①形成刚度矩阵,质量矩阵和阻尼矩阵。 ②给定初始值。 ③选择时间步长参数和,并计算积分常数。 (6) ④形成有效刚度 (7) ⑤对刚度矩阵作三角分解(8) (2)对每一时间步长 ①计算时刻的有效荷载 (9) ②求解时刻的位移 (10) ③计算时刻的速度和加速度 (11) (12) 若计算结构内力则可以把求得的各时刻位移代入刚度矩阵计算。 N