预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。微分运算是求信号的变化率,由傅立叶变换的微分性质可知,微分运算具有较强高频分量作用。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。 图像锐化的方法分为高通滤波和空域微分法。图像的边缘或线条的细节(边缘)部分与图像频谱的高频分量相对应,因此采用高通滤波让高频分量顺利通过,并适当抑制中低频分量,是图像的细节变得清楚,实现图像的锐化,由于高通滤波我们在前面频域滤波已经讲过,所以这里主要讲空域的方法——微分法。 一阶微分运算一阶微分主要指梯度模运算,图像的梯度模值包含了边界及细节信息。梯度模算子用于计算梯度模值,通常认为它是边界提取算子,具有极值性、位移不变性和旋转不变性。 图像在点处的梯度定义为一个二维列矢量: 梯度大的幅值即模值,为: 梯度的方向在最大变化率方向上,方向角可表示为: 对于离散函数也有相应的概念和公式,只是用差分代替微分。差分可取为后向差分,前向差分。 在x,y方向上的一阶向后差分分别定义为: 梯度定义为: 其模和方向分别为: 在实际应用中,梯度的模还有很多近似式,如使用x,y方向上差分绝对值替代模来度量 梯度的模(幅值)就是最大变化率方向的单位距离所增加的量。由梯度的计算可知,在图像灰度变化较大的边沿区域其梯度值大,在灰度变化平缓的区域梯度值较小,而在灰度均匀的区域其梯度值为零。我们根据得到的梯度值来返回像素的值,如将梯度值大的像素设置成白色,梯度值小的设置为黑色,这样就可以将边缘提取出来了,或者是加强梯度值大的像素灰度值就可以突出细节了达到了锐化的目的。 根据梯度值,进而对像素的处理一般有三种方式:锐化是要突出细节(边界),所以要对边缘的像素加强(比如直接用梯度值作为像素的灰度或者RGB的分量),而边缘检测只要根据设置的阀值,超过阀值的像素灰度设为0,否则设为255。 1)辅以阀值判断设T为阀值,像素的梯度值大于T,则像素的灰度(或者RGB的分量)加上某一个值(如100),加上某一个值(如100)像素的灰度值(或RGB的分量值)后若大于255,取255 2)设以某一特定值设t为阀值,像素的梯度值大于T,则像素的灰度(或者RGB的分量)设置为某一定值La 3)二值化图像设T为阀值,像素的梯度值大于T,则像素的灰度(或者RGB的分量)设置为255,否则设置为0 根据图像边界(细节,边缘)的拓扑结构,一阶微分锐化具体又分为单方向的一阶微分锐化和无方向的微分锐化 单方向的一阶锐化是指对某个特定方向上的边缘(细节)信息的进行加强。最简单的单方向一阶锐化就是水平方向与垂直方向上的锐化。 水平方向的锐化非常简单,通过一个可以检测出水平方向上的像素值的变化模板来实现。 垂直方向只需要将方向改变下就可以得到: Kirsch算子 Kirsch算子采用8个模板对图像上的每一个像素点进行卷积求导数,这8个模板代表8个方向,对图像上的8个特定边缘方向作出最大响应,运算(与3*3像素加权之和,就是对应位置相乘后求和)中取最大值作为图像的边缘输出。下面是8个模板: 问题:单方向锐化的计算结果中出现了小于零的像素值? 方法1:整体加一个正整数,以保证所有的像素值均为正。比如+128,还有<0的则视为0,若有>255视为255处理,这样做的结果是:可以获得类似浮雕的效果。 方法2:将所有的像素值取绝对值。这样做的结果是,可以获得对边缘的有方向提取。 无方向一阶锐化问题的提出 前面的锐化处理结果对于人工设计制造的具有矩形特征物体(例如:楼房、汉字等)的边缘的提取很有效。但是,对于不规则形状(如:人物)的边缘提取,则存在信息的缺损。 为了解决上面的问题,就希望提出对任何方向上的边缘信息均敏感的锐化算法。因为这类锐化方法要求对边缘的