预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

传染病的传播及控制分析 摘要 为进一步探索传染病的传播和流行规律及其与防治措施的关系,本文通过建立传染病的传播模型,了解传染病的扩散传播规律,为预测和控制传染病提供可靠、足够的信息。 本文针对该问题建立了SEIR微分方程模型,对病毒的传播过程进行了模拟分析,得出了患者人数随时间的变化规律。我们将人群分为五类:患者、疑似患者、正常人、治愈者和死亡者。前三者作为传染系统。我们认为治愈者获得终身免疫,和死亡者一样移出传染系统,即后两者合并为移出者。 本模型将病毒的传染与扩散分为两个部分:控制前和控制后。在控制前,相当于没有对病毒扩散做任何限制,患者数量短时间内大量增长,并以死亡的形式退出传染系统;在控制后,由于对潜伏者进行了一定强度的隔离,与此同时,确诊患者得到有效的治疗,使得传染源数量减少,患者平均每天接触的人数减少,治愈者增多,并作为主要的移出者移出传染系统。 在模型建立的基础上,通过Matlab软件拟合出患者人数随时间变化的曲线关系图,得到如下结果:控制前,患者人数呈指数增长趋势;控制后,在时,患者人数大致在7天时到达最大值,在25天时基本没有患者;在时,患者人数大概在第8天到达最大值186383,大概在28天之后基本没有患者;在时,大概在第5天患者人数到达峰值为47391,在21天时基本没有患者。综上分析,对隔离强度的处理是控制传染病的一个重要手段。针对所得结果,对H7N9的传播控制时提出了医院、政府和个人应有的一些控制措施。 关键词:隔离强度潜伏期SEIR模型 一、问题重述: 2013年中,H7N9是网上的热点,尤其是其高致死率,引起了人们的恐慌,最近又有研究显示,H7N9有变异的可能。假设已知有一种未知的现病毒[1]潜伏期为天,患病者的治愈时间为天,假设该病毒可以通过人与人之间的直接接触进行传播,患者每天接触的人数为,因接触被感染的概率为(为感染率)。为了控制疾病的传播与扩散,将人群分成五类,患者、疑似患者、治愈者、死亡者、正常人。潜伏期内的患者被隔离的强度为(为潜伏期内患者被隔离的百分数)。 在合理的假设下建立该病毒扩散与传播的控制模型,利用所给数据值生成患者人数随时间变化的曲线,增强或者减弱疑似患者的隔离强度,比较患者人数发生的变化,并分析结果的合理性。最后结合该模型的数据对控制H7N9的传播做出一些科学的建议。 二、问题假设: 假设单位时间内感染病毒的人数与现有的感染者成比例; 假设单位时间内治愈人数与现有感染者成比例; 假设单位时间内死亡人数与现有的感染者成比例; 假设患者治愈恢复后不会再被感染同种病毒,有很强的免疫能力,即被移除出此传染系统; 5、假设正常人被传染后,进入一段时间的潜伏期,处于潜伏期的人群不会表现症状,不可传染健康人,不具有传染性; 6、假设患者入院即表示患者被隔离治疗,被视为无法跟别人接触,故不会传染健康人; 7、假设实际治愈周期过后,如果患者没有治愈,则认为患者死亡,即实际治愈周期过后,患者都被移出此感染系统; 8、假设考察地区内疾病传播期间忽略人口的出生,死亡,流动等种群动力因素对总人数的影响。即:总人口数不变,记为N; 三、符号说明: 符号解释说明S(t)t时刻正常人(易受感染)人数E(t)t时刻疑似患者的人数Q(t)t时刻处于潜伏期的人数I(t)t时刻确诊患者的人数R(t)t时刻退出传染系统的人数(包括治愈者和死亡者)β1潜伏期的人数中转化为确诊患病的人数占潜伏期人数的比例β2每日退出传染系统的人数比例a3确诊患者的治愈时间患者的人均日接触人数因接触被感染的概率潜伏期内的患者被隔离的强度问题分析: 根据题意,这是一个传染性病毒随着时间演变的过程,需要研究传染病在传播过程中各类人群的人数变化,特别是通过研究患者和疑似患者的人数变化,预测传染病的传染的高峰期和持续时间长度,从而我们可以采取相应隔离措施达到控制传染病传播的效果。 我们要分析、预测、研究它就得建立动态模型,查阅相关资料可知,关于传染病的模型已有不少,其中以微分方程模型最具代表性,因题目中把人群分为五类:确诊患者、疑似患者、治愈者、死亡和正常人,所以我们采用微分方程中的SIER模型,将死亡者和治愈者都归于系统移出者统称为恢复人群。在此基础上,我们找出单位时间内这五类人群人数的变化来建立微分方程,得出模型。再利用matlab编程画出图形,改变其隔离强度后重新作图进行比较,对结果进行分析,并利用此模型对控制H7N9的传播做出建议。 五、模型的建立和求解: 5.1传染病模型的准备 不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,因此我们不可能从医学的角度一一分析各种传染病的传播,而只是按一般的传播机理建立模型。 查阅相关资料可知,目前关于传染病的模型已有不少,其中以微分方程建立的模型比较