预览加载中,请您耐心等待几秒...
1/9
2/9
3/9
4/9
5/9
6/9
7/9
8/9
9/9

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

摘要 随着信息和数字时代的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。在现代通信系统中,由于信号中经常混有各种复杂成分,因此很多信号的处理都是基于滤波器而进行的。所以,数字滤波器在数字信号处理中起着举足轻重的作用。而数字滤波器的设计都要以模拟滤波器为基础的,这是因为模拟滤波器的理论和设计方方法都已发展的相当成熟,且有典型的模拟滤波器供我们选择。,如巴特沃思滤波器、切比雪夫滤波器等。 本次课程设计将运用MATLAB设计一个基于切比雪夫低通滤波器,并出所设计滤波器的幅度及幅度衰减特性。 关键词:模拟低通滤波切比雪夫1课题描述 数字滤波器是数字信号处理的重要工具之一,它通过数值运算处理改变输入信号所含频率成分的相对比例或者滤出某些频率成分的数字器件或程序,而数字滤波器处理精度高、体积小、稳定、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。故本课题使用MATLAB信号处理箱和运用切比雪夫法设计数字低通滤波器。 2设计原理 2.1切比雪夫滤波器介绍 在巴特沃兹滤波器中,幅度响应在通带和阻带内都是单调的。因此,若滤波器的技术要求是用最大通带和阻带的逼近误差来给出的话,那么,在靠近通带低频端和阻带截止频率以上的部分都会超出技术指标。一种比较有效的途径是使逼近误差均匀地分布于通带或阻带内,或同时在通带和阻带内都均匀分布,这样往往可以降低所要求的滤波器阶次。通过选择一种具有等波纹特性而不是单调特性的逼近方法可以实现这一点。切比雪夫型滤波器就具有这种性质:其频率响应的幅度既可以在通带中是等波纹的,而在阻带中是单调的(称为I型切比雪夫滤波器),也可以在通带中是单调的,而在阻带中是等波纹的(称为II型切比雪夫滤波器)。I型切比雪夫滤波器的幅度平方函数是 =(2.1) 式中为N阶切比雪夫多项式,定义为 (2.2) 从定义切比雪夫多项式可以直接得出由和求的递推公式。将三角恒等式代入(2.2)式,得 =2x(2.3) 从(2.2)式我们注意到,当0<x<1时,在0和1之间变化;当x>1时,是虚数,所以像双曲余弦一样单调地增加。参考(2.1),对于01呈现出在1和1/()之间的波动;而对于〉1单调地减小。需要用三个参量来确定该滤波器:,和N。在典型的设计中,用容许的通带波纹来确定,而用希望的通带截止频率来确定。然后选择合适的阶次N,以便阻带的技术要求得到满足。 定义允许的通带最大衰减用下式表示: 为了求切比雪夫滤波器在椭圆上极点的位置,我们首先要这样确定,在大圆和小圆上以等角度等间隔排列的那些点:这些点对于虚轴呈对称分布,并且没有一个点落在虚轴上;但当N为奇数时要有一个点落在实轴上,而当N为偶数时,就都不会落在实轴上。切比雪夫滤波器的极点落在椭圆上,起纵坐标由相应的大圆上点的纵坐标来表示,起横坐标由相应的小圆上点的横坐标来表示。 滤波器的分类 (1)从功能上分;低、带、高、带阻。 (2)从实现方法上分:FIR、IIR (3)从设计方法上来分:Chebyshev(切比雪夫),Butterworth(巴特沃斯) (4)从处理信号分:经典滤波器、现代滤波器 模拟滤波器的设计指标 设是一个模拟滤波器的频率响应,则基于平方幅度响应的低通滤波器技术指标为: (2-2-1) (2-2-2) 其中为通带波动系数,和是通带和阻带边缘频率。A为阻带衰减系数。这些指标如图所示。 从图知必须满足 (2-2-3) 其中参数和A是数字滤波器指标。 切比雪夫I型滤波器 切比雪夫低通滤波器的设计原理 切比雪夫滤波器的幅频特性具有等波纹特性。它有两种形式:振幅特性在通带内是等波纹的,在阻带内是单调递减的切比雪夫I型滤波器,振幅特性在阻带内是等波纹的,在通带内是单调递减的切比雪夫II型滤波器,如图所示分别画出了滤波器的幅频特性和衰减函数。 以切比雪夫I型为例介绍其设计原理 幅度平方函数用表示 (2-3-1) 式中,为小于1的正数,表示通带内幅度波动的程度,越大,波动幅度也越大。称为通带截止频率。令,称为对的归一化频率。 定义允许的通带内最大衰减用下式表示 (2-3-2) 式中 (2-3-3) (2-3-4) 因此 (2-3-5) (2-3-6) 这样,可以根据通带内最大衰减,可求出参数。阶数N影响过渡带的宽度,同时也影响通带内波动的疏密,因为N等于通带内的最大值和最小值的总个数。设阻带的起点频率为,则有 (2-3-7) 令,由>1,有 (2-3-8) 可以解出 (2-3-9) (2-3-10) 3dB截止频率用表示, (2-3-11) 按照(2-3-1)式,有 (2-3-12) 经过一系列推论得归一化系统函数为 (2-3-13) 去归一化的系统函数为 (2-3-14) 切比雪夫低通滤波器的设计步骤 (1)确定低通滤波器的技术指标: