预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

10考点24平面向量的概念及其线性运算1.平面向量共线的充要是()A.方向相同B.两向量中至少有一个为零向量C.D.存在不全为零的实数私【答案】D2.已知是两个单位向量时的最小值为则()A.1B.C.1或D.2【答案】C【解析】即当有最小值此时而即为即为1故选C.3.已知向量满足则的取值范围是A.B.C.D.【答案】B4.已知向量若则实数的值为()A.-2B.0C.1D.2【答案】D【解析】因为由得解得x=2故选D.5.已知向量A.B.2C.D.-3【答案】D【解析】向量则(2m+1)则-(m+1)=2解得m=-3.故答案为:D.6.如果向量=(k1)与=(6k+1)共线且方向相反那么k的值为()A.-3B.2C.-D.【答案】A【解析】∵向量与共线且方向相反∴(k1)=λ(6k+1)λ<0∴k=6λ1=(k+1)λ解得k=﹣3故答案为:A7.已知P是边长为2的正△ABC边BC上的动点则()A.最大值为8B.是定值6C.最小值为2D.与P的位置有关【答案】B8.若向量与向量共线则()A.B.C.D.【答案】B【解析】由向量共线坐标表示可得解得所以选B9.中为中点.若则A.B.C.D.【答案】C【解析】由题得所以故答案为:C10.在△中为的中点点满足则()A.B.C.D.【答案】A11.在△中为的中点点满足则A.B.C.D.【答案】A【解析】因为为的中点点满足所以可得故选A.12.已知平面向量且则()A.B.C.D.【答案】D13.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形且与黄金分割有着密切的联系:在如图所示的正五角星中以为顶点的多边形为正五边形且.下列关系中正确的是()A.B.C.D.【答案】A14.已知中为AB边上的中点则A.0B.25C.50D.100【答案】C【解析】由勾股定理逆定理可知三角形为直角三角形CM为斜边上的中线所以原式=.故选C.15.已知不共线的两个向量且若存在个点()关于点的对称点为()关于点的对称点为()当点为线段中点时则()A.B.C.D.5【答案】A【解析】根据三角形中位线性质得所以因此选A.16.已知平面向量且则()A.B.C.D.【答案】D17.已知为抛物线的焦点为抛物线上三点当时称为“和谐三角形”则“和谐三角形”有()A.0个B.1个C.3个D.无数个【答案】D【解析】抛物线方程为为曲线上三点当时为的重心用如下办法构造连接并延长至使当在抛物线内部时设若存在以为中点的弦设则则两式相减化为所以总存在以为中点的弦所以这样的三角形有无数个故选D.18.在中点满足点在线段上运动若则取得最小值时向量的模为_______.【答案】∴则当且仅当时取最小值.此时.故答案为.19.已知向量夹角为且则__________.【答案】20.已知向量其中且与共线则当取最小值时为__________.【答案】【解析】由向量共线的充要条件得则当且仅当时取等号此时则21.已知向量满足则的夹角为__________.【答案】【解析】由题得因为所以故填.22.已知向量且则__________.【答案】【解析】由题得故填.23.设向量不共线向量与平行则实数__________.【答案】24.已知向量若则实数__________.【答案】-8【解析】∵∴-k-8=0解得k=-8.即答案为-8..25.已知向量与不共线且.若ABD三点共线则___________.【答案】1【解析】∵ABD三点共线∴存在实数k使得=k∴=k(+)=k+k向量与不共线.∴1=knm=k解得mn=1.故答案为:1.