预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

供热系统混水连接方式的选优 清华大学石兆玉 摘要:为节能(电)的需要,我国采用混水连接方式的供热系统已成为行业关 注的新热点。为使设计方案更加科学合理,本文就混水连接的管网特性、 方案的最优组成以及节能(电)计算进行了探讨。 关键词:供热系统混水连接方式管网特性节能优选 一、分布式混水连接系统的优势 混水连接方式是供热系统直接连接的一种传统的有效的方式。多采用喷射泵和混水泵实现。近年来,由于节能、节电的需求以及变频调速水泵的广泛应用,混水泵的连接方式,呈现出明显优势,因此,成为新近一个时期,业内人员普遍关注的热点。 作者在“供热系统分布式变频循环水泵的设计”一文中[1],就分布式变频混水泵的节电优势,做过详细的分析论证:一般分布式变频循环水泵的供热系统,其水泵装机容量与传统设计方案相比,节电1/3;而分布式混水泵供热系统,其装机节电量为2/3。若在运行期间,采用变频变流量调节,则全系统节电85%左右,优势更为显著。 分析分布式混水泵节电原因,主要是能更多的消除管网在热媒输送过程中的无效电耗,进而提高了管网的输送效率。采用分布式混水泵系统,最大的特点是减少了一次网的设计循环流量(增大了供、回水温差,对于高温水供热更是如此)。众所周知:当管网比摩阻相同时,分布式循环水泵的设计方案与传统设计方案相比,水泵扬程基本相等。水泵电机装机电量的节省,主要体现在流量的选择上。对于传统设计方法,由于循环水泵设置在热源处,其循环流量必然是系统的总设计流量,这就造成系统循环水泵的电功率,远大于实际需要的数值,其结果是在系统的近端热用户形成过量的资用压头,以至于不得不加装流量调节阀进行节流,造成大量电能的无谓浪费。采用分布式混水泵系统,不但避免了上述电能的浪费,而且大大降低系统一次网总的循环流量,从而实现在最小的耗电功率下达到最大供热量的输送,这是分布式混水泵节电的根本原因。 分布式混水泵连接方式的另一优势,是能灵活适应热用户的各种不同采暖方式的需求。近年来,除散热器采暖方式外,空调热风采暖,地板辐射采暖等形式大量涌现。散热器采暖需要较高的二次网设计供水温度(一般应在85℃以上,供、回水设计温差为20~25℃);空调热风采暖,二次网供、回水设计温度为60/50℃;地板辐射采暖,二次网供、回水温度以45~50/35~40℃为宜。对于分布式混水泵系统,只要改变不同的混合比(二次网混水量与一次网供水量之比),就能很方便地实现上述各种不同采暖形式的参数要求。 分布式混水泵系统的上述优点,对于分布式循环水泵的间接连接系统(通过板换实现)也同样能够实现,但后者的初投资比前者大,这是分布式混水泵系统的又一重要优势。 二、几种混水连接方式的特性 目前常采用的混水连接方式有以下几种,如图1所示: 图1-a为喷射泵连接;图1-b,混水泵置于旁通管上;图1-c,混水泵置于二次网供水管上;图1-d,混水泵置于二次网回水管上;图1-e,一次网供水管上置热网循环泵,二次网供水管上置混水泵。在分布式混水连接中,为适应自动控制的需要,常在上述喷射泵、混水泵前后的相关位置设置电动调节阀,而且数量不止一个。从近几年对实际工程的观察:上述所有连接方式的设计都比较随意,有的工艺比较合理,有的并不合理;甚至由于工艺不合理,导致本想节能而实则费能的结果。为了优化设计,深入分析上述几种连接方式的特性,进而明确不同工程应具有不同的优选方案,是十分必要的。 (a)(b) (c)(d)(e) 图1几种混水连接方式示意图 1—热用户2—混水旁通管 a)喷射泵;b)旁通混水泵;c)二次网供水混水泵; d)二次网回水混水泵;e)一次管网泵,二次供水混水泵 1.工况计算的基本公式 混水系统通用示意图如图2所示。混水装置(含喷射泵、混水泵)可能分别或同时设置在一、二次网和混水旁通管上。为深入研究混水装置和各种调节阀的优化配置,有必要对混水系统的工况进行基本分析。 图2混水泵系统通用示意图 根据电学的基尔霍夫定律,可对图2的混水泵系统的流量、压力建立如下的基本关系: G2g=G1g+Gh(1) ΔH1+ΔH2=ΔP1+ΔP2(2) ΔH1-ΔHh=ΔP1(3) ΔH2+ΔHh=ΔP2+ΔPh(4) 又根据电学的特兰根定律,可建立各种混水装置的水泵电功率与系统各管段的流量、压降的如下关系: G1gΔH1+G2gΔH2+Gh·ΔHh=N1+N2+Nh(5) 式中,G1g、G2g、Gh——分别为一、二次网和混水旁通管的流量; ΔH1、ΔH2、ΔHh——分别为一、二次网和混水旁通管的管段压力降; ΔP1、ΔP2、ΔPh——分别为一、二次网和混水旁通管的混水装置的扬程; N1、N2、Nh——分别为一、二次网和混水旁通管的混水装置的电功率。 2.混合比[1] 对于各种混水连接方式的供热系统,混合比亦称混合系