预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共13页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

AP聚类算法 1.分类与聚类 1.1分类算法简介 分类(classification)是找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标记未知的对象类。 在分类算法中输入的数据,或称训练集(TrainingSet),是一条条的数据库记录(Record)组成的。每一条记录包含若干条属性(Attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(ClassLabel)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,...,vn;c)。在这里vi表示字段值,c表示类别。 分类的目的是:分析输入的数据,通过--在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。注意是预测,而不能肯定。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 下面对分类流程作个简要描述: 训练:训练集——>特征选取——>训练——>分类器 分类:新样本——>特征选取——>分类——>判决 常见的分类算法有:决策树、KNN法(K-NearestNeighbor)、SVM法、VSM法、Bayes法、神经网络等。 1.2聚类算法简介 聚类(clustering)是指根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。 与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组。 它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似。 聚类分析的算法可以分为:划分法(PartitioningMethods)、层次法(HierarchicalMethods)、基于密度的方法(density-basedmethods)、基于网格的方法(grid-basedmethods)、基于模型的方法(Model-BasedMethods)。 经典的K-means和K-centers都是划分法。 分类与聚类的区别 聚类分析也称无监督学习或无指导学习,聚类的样本没有标记,需要由聚类学习算法来自动确定;在分类中,对于目标数据库中存在哪些类是知道的,要做的就是将每一条记录分别属于哪一类标记出来。聚类学习是观察式学习,而不是示例式学习。 可以说聚类分析可以作为分类分析的一个预处理步骤。 2.K-MEANS算法 k-means算法接受输入量k;然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较低。簇的相似度是关于簇中对象的均值度量,可以看作簇的质心(centriod)或重心(centerofgravity)。 k-means算法的工作过程说明如下:首先从n个数据对象任意选择k个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数.,其定义如下: (1) 其中,E是数据集中所有对象的平方误差和,p是空间中的点,表示给定对象,是簇的均值(p和都是多维的)。换句话说,对于每个簇中的每个对象,求对象到其簇中心距离的平方,然后求和。这个准则试图使生成的k个结果簇尽可能的紧凑和独立。 例1:我们在二维空间中随机的生成20个数据点,将聚类数目指定为5个,并随机生成一个聚类中心(用“×”来标注),根据对象与簇中心的距离,每个对象分成于最近的簇。初始示例图如下: *** 图1.随机生成的数据点及初始聚类中心示例图 下一步,更新簇中心。也就是说,根据簇中的当前对象,重新计算每个簇的均值。使用这些新的簇中心,将对象重新分成到簇中心最近的簇中。 不断迭代上面的过程,直到簇中对象的重新分布不再发生,处理结束。最终的聚类结果示例图如下: 图2.最终聚类结果示例图 从上图中我们可以看到,最终的聚类结果受初始聚类中心的影响很大,而且最后的簇质心点不一定是在数据点上。 K均值算法试图确定最小化平方误差的k个划分。当结果簇是紧凑的,并且簇与簇之间明显分离时,它的效果较好。对处理大数据集,该算法是相对可伸缩的和有效率的,因为它的计算复杂度是O(nkt),其中n是对象的总数,k是簇的个数,t是迭代的次数。通常地,k<<n并且t<<n。该方法经常终止于局部最优解。 然而,只有当簇均值有定义的情况下k均值方法才能使用。在某