预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中物理模块化复习学生学案 专题一滑块与木板 一应用力和运动的观点处理(即应用牛顿运动定律) 典型思维方法:整体法与隔离法 注意运动的相对性 【例1】木板M静止在光滑水平面上,木板上放着一个小滑块m,与木板之间的动摩擦因数μ,为了使得m能从M上滑落下来,求下列各种情况下力F的大小范围。 【例2】如图所示,有一块木板静止在光滑水平面上,木板质量M=4kg,长L=1.4m.木板右端放着一个小滑块,小滑块质量m=1kg,其尺寸远小于L,它与木板之间的动摩擦因数μ=0.4,g=10m/s2, (1)现用水平向右的恒力F作用在木板M上,为了使得m能从M上滑落下来,求F的大小范围. (2)若其它条件不变,恒力F=22.8N,且始终作用在M上,求m在M上滑动的时间. 【例3】质量m=1kg的滑块放在质量为M=1kg的长木板左端,木板放在光滑的水平面上,滑块与木板之间的动摩擦因数为0.1,木板长L=75cm,开始时两者都处于静止状态,如图所示,试求:(1)用水平力F0拉小滑块,使小滑块与木板以相同的速度一起滑动,力F0的最大值应为多少?(2)用水平恒力F拉小滑块向木板的右端运动,在t=0.5s内使滑块从木板右端滑出,力F应为多大?(3)按第(2)问的力F的作用,在小滑块刚刚从长木板右端滑出时,滑块和木板滑行的距离各为多少?(设m与M之间的最大静摩擦力与它们之间的滑动摩擦力大小相等)。(取g=10m/s2). x2 x1 L F 【例4】如图所示,在光滑的桌面上叠放着一质量为mA=2.0kg的薄木板A和质量为mB=3kg的金属块B.A的长度L=2.0m.B上有轻线绕过定滑轮与质量为mC=1.0kg的物块C相连.B与A之间的滑动摩擦因数µ=0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B位于A的左端(如图),然后放手,求经过多长时间t后B从A的右端脱离(设A的右端距滑轮足够远)(取g=10m/s2). 例1解析(1)m与M刚要发生相对滑动的临界条件:①要滑动:m与M间的静摩擦力达到最大静摩擦力;②未滑动:此时m与M加速度仍相同。受力分析如图,先隔离m,由牛顿第二定律可得:a=μmg/m=μg 再对整体,由牛顿第二定律可得:F0=(M+m)a 解得:F0=μ(M+m)g 所以,F的大小范围为:F>μ(M+m)g (2)受力分析如图,先隔离M,由牛顿第二定律可得:a=μmg/M 再对整体,由牛顿第二定律可得:F0=(M+m)a 解得:F0=μ(M+m)mg/M 所以,F的大小范围为:F>μ(M+m)mg/M 例2[解析](1)小滑块与木板间的滑动摩擦力f=μFN=μmg=4N…………① 滑动摩擦力f是使滑块产生加速度的最大合外力,其最大加速度 a1=f/m=μg=4m/s2…② 当木板的加速度a2>a1时,滑块将相对于木板向左滑动,直至脱离木板 F-f=ma2>ma1F>f+ma1=20N…………③ 即当F>20N,且保持作用一般时间后,小滑块将从木板上滑落下来。 (2)当恒力F=22.8N时,木板的加速度a2',由牛顿第二定律得F-f=Ma2' 解得:a2'=4.7m/s2………④ 设二者相对滑动时间为t,在分离之前 小滑块:x1=½a1t2…………⑤ 木板:x1=½a2't2…………⑥ 又有x2-x1=L…………⑦ 解得:t=2s…………⑧ 例3解析:(1)对木板M,水平方向受静摩擦力f向右,当f=fm=μmg时,M有最大加速度,此时对应的F0即为使m与M一起以共同速度滑动的最大值。对M,最大加速度aM,由牛顿第二定律得:aM=fm/M=μmg/M=1m/s2 要使滑块与木板共同运动,m的最大加速度am=aM, 对滑块有F0-μmg=mam所以F0=μmg+mam=2N即力F0不能超过2N (2)将滑块从木板上拉出时,木板受滑动摩擦力f=μmg,此时木板的加速度a2为a2=f/M=μmg/M=1m/s2.由匀变速直线运动的规律,有(m与M均为匀加速直线运动)木板位移x2=½a2t2①滑块位移x1=½a1t2②位移关系x1-x2=L③将①、②、③式联立,解出a1=7m/s2对滑块,由牛顿第二定律得:F-μmg=ma1所以F=μmg+ma1=8N (3)将滑块从木板上拉出的过程中,滑块和木板的位移分别为x1=½a1t2=7/8mx2=½a2t2=1/8m 例四:以桌面为参考系,令aA表示A的加速度,aB表示B、C的加速度,sA和sB分别表示t时间A和B移动的距离,则由牛顿定律和匀加速运动的规律可得 mCg-µmBg=(mC+mB)aB µmBg=mAaA sB=½aBt2sA=½a