预览加载中,请您耐心等待几秒...
1/7
2/7
3/7
4/7
5/7
6/7
7/7

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

BLACK-SCHOLES期权定价模型 Black-Scholes期权定价模型(Black-ScholesOptionPricingModel),1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBertMerton)和斯坦福大学教授迈伦·斯克尔斯(MyronScholes)。他们创立和发展的布莱克-斯克尔斯期权定价模型(BlackScholesOptionPricingModel)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础,特别是为评估组合保险成本、可转换债券定价及认股权证估值等提供了依据。 BLACK-SCHOLES期权定价模型-简介 斯克尔斯与他的同事、已故数学家费雪·布莱克(FischerBlack)在70年代初合作研究出了一个期权定价的复杂公式(看涨和看跌)。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型(含红利的)。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞士皇家科学协会(TheRoyalSwedishAcademyofSciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。 BLACK-SCHOLES期权定价模型-其假设条件 (一)B-S模型有5个重要的假设 1、金融资产收益率服从对数正态分布;(股票价格走势遵循几何布朗运动) 2、在期权有效期内,无风险利率和金融资产收益变量是恒定的; 3、市场无摩擦,即不存在税收和交易成本; 4、该期权是欧式期权,即在期权到期前不可实施; 5、金融资产在期权有效期内无红利及其它所得(该假设后被放弃); 6、不存在无风险套利机会; 7、证券交易是持续的; 8、投资者能够以无风险利率借贷。 (二)荣获诺贝尔经济学奖的B-S定价公式 其中: C—期权初始合理价格 L—期权交割价格 S—所交易金融资产现价 T—期权有效期 —连续复利计无风险利率 —年度化方差(波动率) N()—正态分布变量的累积概率分布函数,(标准正态分布μ=0) 在此应当说明两点: 第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r要求利率连续复利。r0必须转化为r方能代入上式计算。两者换算关系为:r=ln(1+)或=-1。例如r0=0.06,则r=ln(1+0.06)=0.0583,即100以5.83%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。 第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。 BLACK-SCHOLES期权定价模型-推导运用 (一)B-S模型的推导B-S模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是: E[G]=E[max(ST-L,O)] 其中,E[G]—看涨期权到期期望值 —到期时交易金融资产的市场价值 L—期权交割价(期权费) 到期有两种可能情况: 1、如果St>L,则期权实施以进帐(In-the-money)生效,且max(St-L,O)=St-L 2、如果St<L,,则期权所有人放弃购买权力,期权以出帐(Out-of-the-money)失效,且max(St-L,O)=0 从而: 其中: P:(St>L)的概率E[St|St>L]:既定(St>L)下St的期望值将E[G]按有效期无风险连续复利贴现,得期权初始合理价格: C=P×E-×(E[St|St>L]-L)(*)这样期权定价转化为确定P和E[St|St>L]。 首先,对收益进行定义。与利率一致,收益为金融资产期权交割日市场价格(St)与现价(S)比值的对数值,即收益=lnSt/S=ln(St/L)。由假设1收益服从对数正态分布,即ln(St/L)~,所以E[ln(St/S]=μt,St/S~可以证明,相对价格期望值大于,为:E[St/s]=+=从而,μt=T(r−σ2),且有σt=σT 其次,求(St>L)的概率P,也即求收益大于(LS)的概率。已知正态分布有性质:Pr06[ζ>χ]=1-N(χ-μσ)其中: ζ—正态分布随机变量 χ—关键值 μ—ζ的期望值 σ—ζ的标准差 所以::P=Pr06[St>1]=Pr06[lnSt/s]>lnLS=LN−lnLS−(r−σ2)TσTnc4由对称性:1−N(d)=N(−d)P=NlnSL+(r−σ2)TσTarS。 第三,求既定St>L下St的期望值。因为E[St|St>L]处于正态分布的L到∞