预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

谱-Galerkin方法求解分数阶偏积分微分方程(英文) Title:Spectral-GalerkinMethodforSolvingFractionalPartialIntegral-DifferentialEquations Abstract: Fractionalcalculushasgainedsignificantattentioninrecentyearsduetoitsabilitytomodelcomplexsystemsmoreaccurately.Fractionalpartialintegral-differentialequations(FPIDEs)aregeneralizationsofclassicalPDEsthatinvolvebothfractionalderivativesandintegrals.Inthispaper,wepresenttheSpectral-GalerkinMethod(SGM)asanefficienttoolfornumericallysolvingFPIDEs.TheSGMcombinestheGalerkinframeworkwithbasisfunctionsdefinedonaspectraldomain,providingareliableandaccurateapproachtohandlingthecomplexityoffractionalcalculus. 1.Introduction: Thestudyoffractionalcalculushasexpandedtherealmofmathematicalmodelingandanalysis,leadingtomoreaccuratedescriptionsofphysicalphenomenathatclassicalcalculusfailstocapture.FPIDEsariseinvariousareassuchasphysics,engineering,finance,andbiology,makingtheirnumericalsolutionasubjectofconsiderableinterest.TraditionalnumericalmethodsoftenstruggletoefficientlysolveFPIDEsduetothenon-localcharacteristicsintroducedbyfractionalderivativesandintegrals.TheSpectral-GalerkinMethodoffersapromisingalternativebyleveragingthepropertiesofspectralapproximationsandGalerkinframework. 2.TheoreticalBackground: Thissectiondiscussesthefundamentalconceptsoffractionalcalculus,includingRiemann-LiouvilleandCaputofractionalderivatives,andfractionalintegrals.WealsopresentthebasicpropertiesandbehaviorsofFPIDEs,highlightingthechallengestheyposefortraditionalnumericalmethods. 3.SpectralApproximation: TheSpectral-GalerkinMethodreliesonapproximatingthesolutionsofFPIDEsusingbasisfunctionsdefinedonaspectraldomain.Wediscussthechoiceofspectralbasisfunctionsandtheirproperties,suchasorthogonalpolynomials(e.g.,Fourierseries,Legendrepolynomials)orwavelets,andtheirabilitytoefficientlyhandlenon-localityandsingularityproblemstypicallyencounteredinFPIDEs. 4.GalerkinFramework: TheGalerkinframeworkisawidelyusedtechniqueforthenumericalsolutionofPDEs,anditformsthefoundationoftheSpectral-Ga