预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

线性模型变点问题的贝叶斯分析(英文) BayesianAnalysisofChange-PointProblemsinLinearModels Introduction Linearmodelsformanessentialpartofstatisticalanalysis,andtheyareusedtoestablishrelationshipsbetweenvariables.Oneofthechallengesinlinearmodelsistheidentificationofchangepoints,indicatingashiftintherelationshipbetweenvariablesatsomepointintime.Change-pointproblemsarecommoninmanyfields,includingeconomics,finance,engineering,andenvironmentalstudies.Bayesianmethodsprovideaflexibleframeworkfordealingwithsuchproblemsandareincreasinglybeingusedinvariousapplications.Inthispaper,wewillreviewtheBayesianapproachtochange-pointproblemsinlinearmodelsanddiscussitsadvantagesandlimitations. Background Change-pointproblemsarisewhenthereisashiftintherelationshipbetweenvariables,leadingtoabreakinthecontinuityofthedata.Forexample,intime-seriesanalysis,achangepointmayoccurwhenthetrendofavariablesuddenlychanges.Identifyingsuchpointsiscrucialbecausetheycanaffecttheinterpretationofthedataandthesuitabilityofthemodel.Variousmethodshavebeenproposedforidentifyingchangepoints,includingclassicalstatisticalmethodsandBayesianmethods. Bayesianmethodsforchange-pointproblemsinvolvespecifyingapriordistributionforthenumberandlocationofchangepoints,andupdatingthedistributionbasedontheobserveddatausingBayes'theorem.Theposteriordistributionprovidesinformationonthemostprobablenumberandlocationofchangepointsandtheiruncertainties.Bayesianmethodshaveseveraladvantagesoverclassicalmethods,includingtheabilitytoincorporatepriorinformation,theflexibilitytohandlecomplexmodels,andtheabilitytogenerateprobabilisticinference. BayesianApproachtoChange-PointProblemsinLinearModels TheBayesianapproachtochange-pointproblemsinlinearmodelsinvolvesspecifyingapriordistributionfortheparametersofthemodelandapriordistributionforthenumberandlocationofchangepoints.TheposteriordistributioniscomputedusingBayes'theorem,whichupdatesthepriorsbasedontheobserveddata.Theposteriordistributionprovidesinformationonthemostprobablenumberandlocationofchangepointsand