预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

求解VRPSTW问题的参数优化蚁群算法 Introduction VehicleRoutingProblemwithTimeWindows(VRPSTW)isawell-knowncombinatorialoptimizationproblemthathasbeenwidelystudied.Theproblemistodeterminethebestpossibleroutingplanforafleetofvehiclestoserveasetofcustomerswithtimewindowsandcapacityconstraints.Theobjectiveistominimizethetotaldistancetraveledbyallthevehicleswhilerespectingtheseconstraints.TheVRPSTWproblemisanNP-hardproblem,andexactalgorithmsforsolvinglarge-scaleinstancesarecomputationallyintractable.Therefore,heuristicalgorithmssuchasAntColonyOptimization(ACO)havebeenproposedforsolvingthisproblem. AntColonyOptimization(ACO)isametaheuristicalgorithminspiredbytheforagingbehaviorofants.ACOhasbeensuccessfullyappliedtovariouscombinatorialoptimizationproblems,includingtheVRPSTWproblem.ACOisapopulation-basedalgorithmthatusesacolonyofartificialantstosearchfortheoptimalsolution.Thealgorithmischaracterizedbytwomajorcomponents:thepheromonetrailsandtheantbehavior. Inthispaper,weproposeaparameteroptimizationmethodfortheACOalgorithmtosolvetheVRPSTWproblem.ThemethodaimstofindtheoptimalvaluesoftheACOparametersthatcanimprovetheperformanceofthealgorithm.Therestofthepaperisorganizedasfollows:Section2providesabriefreviewoftheVRPSTWproblemandtheACOalgorithm.Section3describestheproposedparameteroptimizationmethod.Section4presentstheexperimentalresults,andSection5concludesthepaper. VRPSTWProblem TheVRPSTWproblemisavariantoftheclassicalVehicleRoutingProblem(VRP)thatimposesadditionalconstraintsontheproblem.IntheVRPSTW,thecustomershavespecifictimewindowsinwhichtheycanbeservedandcapacityconstraints.Theobjectiveistominimizethetotaldistancetraveledbyallthevehicleswhilesatisfyingtheseconstraints. Theproblemcanbedefinedasfollows:Givenasetofcustomerswithdemands,timewindows,andlocations,afleetofvehicleswithlimitedcapacity,adepot,andadistancematrix,theproblemistofindtheoptimalsetofvehicleroutesthatserveallthecustomerswithintheirrespectivetimewindowsandminimizethetotaldistancetraveledbyallthevehicles. ACOAlgorithm ACOisa