预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

渐近半伪压缩映射的收敛性定理及其应用(英文) ConvergenceTheoremandItsApplicationsofAsymptoticallySemi-Pseudo-ContractiveMaps Introduction Inrecentyears,thestudyofasymptoticallysemi-pseudo-contractivemapshasgainedattentionasapowerfultooltoanalyzetheconvergenceofvariousiterativemethodssuchasfixedpointiterations,gradientbasedoptimizationmethods,anddynamicalsystemswithapplicationtomorecomplicatedproblemsinphysics,economics,andotherfields.Inthispaper,wepresentaconvergencetheoremforasymptoticallysemi-pseudo-contractivemapsandprovidesomeapplicationsofthistheorem. ConvergenceTheorem LetXbeanon-emptyboundedclosedconvexsubsetofarealHilbertspaceH,andletT:X→Xbeanasymptoticallysemi-pseudo-contractivemap,inthesensethatthereexistsasequence(αn)∈(0,1)suchthat ||Tn+1(x)-Tn(x)||≤αn||Tn(x)-x||,forallx∈Xandforalln∈N. If(x_n)isanysequencegeneratedbytheiterativeprocessx_{n+1}=T_n(x_n),then(x_n)convergesweaklytoafixedpointofT. Proof: LetxbeaweaklyconvergentsequenceinXwithlimitpointa.Thenwehave T_n(x)↔T(a)asn→∞,andT(a)=abythedefinitionofTasafixedpoint.Thus, ||T_n(x)-a||≤||T_n(x)-T(a)||+||T(a)-a|| ≤α_n||x-a||+||T(a)-a||,(bythedefinitionofsemi-pseudo-contractivemap) whichimpliesthat||T_n(x)-a||isboundedbyasummablesequence,asα_n∈(0,1).BytheBanach-Alaoqlutheorem,wecanobtainasubsequenceofT_n(x)thatconvergesweaklytosome y∈H.ButT_n(x)waschosenarbitrarily,soanysubsequence(y_{n_k})of(T_n(x))isconvergent. Since(y_{n_k})convergestoyweakly,andTisasymptoticallysemi-pseudo-contractive,thefollowinginequalityholds: ||y-a||^2=lim_{k→∞}||y_{n_k}-a||^2 ≤lim_{k→∞}||T_{n_k}(y_{n_k})-a||^2 ≤lim_{k→∞}α_{n_k}^2||y_{n_k}-a||^2, byapplyingthePythagoreaninequalityforeachtermininequality.Itfollowsthatlim_{k→∞}||y_{n_k}-a||=0,so(T_{n_k}(x))convergestoaweaklyasitssubsequenceconvergestoaweakly.Therefore,wehaveprovedthatanysequencegeneratedbytheiterativeprocessx_{n+1}=T_n(x_n)convergesweaklytoafixedpointofT. Applications Asymptoticallysemi-pseudo-contractivemapshavenumerousapplications,especiallyinoptimizationproblems,inverseproblems,andchaoti