预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于蚁群遗传算法的舵机系统辨识(英文) Title:IdentificationofServoSystemBasedonAntColonyGeneticAlgorithm Introduction Asanimportantpartofthecontrolsystem,servosystemplaysasignificantroleinthefieldofautomationandrobotics.Accurateidentificationofservosystemparametersisessentialforthedesign,analysis,andcontrolofthesystem.Inrecentyears,variousidentificationmethodshavebeenproposedtoimprovetheaccuracyandefficiencyofparameteridentification.Amongthem,antcolonygeneticalgorithmhasattractedalotofattentionduetoitspowerfuloptimizationabilityandglobalsearchcapability.Inthispaper,weproposeamethodofservosystemidentificationbasedonantcolonygeneticalgorithm. AntColonyGeneticAlgorithm Antcolonygeneticalgorithmisahybridoptimizationalgorithmthatcombinesantcolonyoptimizationandgeneticalgorithm.Antcolonyoptimizationisinspiredbythebehaviorofantssearchingforfood.Inthealgorithm,antsleavepheromonesonthepathstheyhavetraveled,andthepheromonesattractotherantstofollowthesamepath.Overtime,thepathswithhigherpheromoneconcentrationareselectedmorefrequently,andtheoptimalpathisgraduallyfound.Geneticalgorithmisaheuristicoptimizationmethodbasedontheprincipleofnaturalselectionandgeneticvariation.Thealgorithmmaintainsapopulationofcandidatesolutions,anditerativelyimprovesthesolutionsbyselection,reproduction,andmutationoperations. Methodology Theidentificationofservosystemparametersisessentiallyamodelparameterestimationproblem.Inthisstudy,weconsiderasecond-orderlinearmodeloftheservosystem: y(t)=K/(s^2+2ζωns+ωn^2)u(t) wherey(t)istheoutput,u(t)istheinput,Kisthegain,ζisthedampingratio,ωnisthenaturalfrequency,andsistheLaplacevariable. Theantcolonygeneticalgorithmisusedtooptimizetheparametervaluesofthemodel.Theoptimizationproblemisformulatedasfollows: minimize||y(t)-y_model(t)|| wherey_model(t)istheoutputofthemodelwithoptimizedparameters. Thealgorithmincludesthefollowingsteps: 1.Initializethepopulationofparametervalues. 2.Calculatethefitnessvalueofeachindividualbycomparingtheoutputofthemodelwiththemeasureddata. 3.Selectthebestindiv