预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于蚁群算法的体绘制视点优化 Abstract Antcolonyoptimization(ACO)isametaheuristicalgorithmthatcanbeappliedtomanyoptimizationproblems,includingtheoptimizationofviewpointsin3Dbodyrendering.Inthispaper,weproposedanovelapproachforoptimizingviewpointsin3DbodyrenderingusingACO.Experimentalresultsshowthattheproposedapproachoutperformsotherexistingmethodsintermsofbothconvergencespeedandsolutionquality. Introduction Inrecentyears,3Dbodyrenderinghasbecomeincreasinglypopularinvariousapplicationssuchasgaming,virtualreality,andmedicalvisualization.Oneofthekeychallengesin3Dbodyrenderingistofindanoptimalviewpointforagiven3Dmodel.Anoptimalviewpointcanhelptoprovideuserswithabetterunderstandingofthe3Dmodelandenhancetheoveralluserexperience. Optimizingviewpointsfor3Dbodyrenderingisachallengingproblemduetothelargesearchspaceandthecomplexrelationshipsbetweenthemodelandtheviewpoint.Traditionaloptimizationmethodssuchasgradientdescentandgeneticalgorithmsarenotwellsuitedforthisproblem.Antcolonyoptimization(ACO)isametaheuristicalgorithmthathasbeenshowntobeeffectiveinsolvingmanyoptimizationproblems,includingsomethatposeasignificantchallengetootheroptimizationmethods.Inthispaper,weproposeanovelapproachforoptimizingviewpointsin3DbodyrenderingusingACO. AntColonyOptimization ACOisametaheuristicalgorithmthatisinspiredbythebehaviorofantsinfindingtheshortestpathbetweentheirnestandafoodsource.InACO,asetofartificialantsareusedtoexplorethesearchspaceandleavepheromonetrailsonthepathstheytake.Thesepheromonetrailsactasacommunicationchannelbetweentheantsandinfluencetheirdecision-makingprocess.Thepheromonetrailswillbereinforcedwhentheyaretraversedbymoreants,anddecayovertimeiftheyarenotused.ThismechanismallowsACOtoconvergetoagoodsolutionwhileavoidinglocaloptima. ACOhasbeenappliedtomanyoptimizationproblemsandhasshownpromisingresultsinvariousapplications.OneoftheadvantagesofACOisitsabilitytohandlecomplexsearchspaceswithmultipleobjectives.ACOhasbeenusedsuccessfullyinsolvingmanycombinatorialoptimizationproblems,suchasthetravel