预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于深度学习的高分辨率遥感影像分类研究 Abstract Withtherapiddevelopmentofremotesensingtechnology,high-resolutionremotesensingimageshavebecomeafundamentaldatasourceforEarthobservation,urbanplanning,anddisasterprevention.Imageclassificationisoneofthecriticaltasksinremotesensingimageprocessing.Traditionalmethodsforimageclassificationrelyonmanualfeatureextraction,whichistime-consumingandlacksaccuracy.Adeeplearningapproacheffectivelyaddressesthisissuebyautomaticallyextractingfeaturesandhasbeenwidelyusedinimageclassificationtasks.Inthispaper,wefocusontheapplicationofdeeplearningtechniquesforhigh-resolutionremotesensingimageclassificationandprovideanextensivereviewofrelatedworks.WealsoproposeanapproachtoimageclassificationbasedonConvolutionNeuralNetworks(CNN)andevaluateitsperformanceonvariousdatasets.Ourproposedmethodachievedhighaccuracyanddemonstratestheeffectivenessofdeeplearninginhigh-resolutionremotesensingimageclassification. Keywords:RemoteSensing,ImageClassification,DeepLearning,ConvolutionalNeuralNetworks. Introduction Remotesensingtechnologyhasbeenwidelyusedinvariousfieldssuchasurbanplanning,agriculturemonitoring,andenvironmentalprotection.High-resolutionremotesensingimagesprovidecomprehensive,timely,andaccurateinformationforunderstandingtheEarth'ssurface.Imageclassificationisoneofthefundamentaltasksinremotesensingimageprocessing,whichaimstolabelthepixelsinanimagewithdifferentcategories,suchasvegetation,water,urbanland,andsoon.Accurateimageclassificationisessentialforawiderangeofapplications,suchasurbanplanning,landusemonitoring,disasterprevention,andmilitaryintelligence. Traditionalimageclassificationmethodsrelyonmanualfeatureextraction,suchastexture,color,andshape,whichistime-consumingandoftenresultsinlowaccuracyduetothecomplexityandvariabilityofremotesensingimages.Withtherapiddevelopmentofdeeplearningtechniques,automaticfeatureextractionhasbecomefeasible,andmanystudieshavedemonstratedtheeffectivenessofdeeplearningapproachesinimageclassificationtasks. ConvolutionalNeuralNetworks(C