预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于主题本体扩展特征的短文本分类 摘要 短文本分类是自然语言处理的重要领域之一,它对于信息检索和文本分类具有重要的意义。在短文本分类过程中,主题本体能够对文本特征进行有效的扩展,提高文本分类的准确率和性能。本文对于基于主题本体扩展特征的短文本分类技术进行了研究和探讨。通过实验验证,证明主题本体扩展特征在短文本分类中具有重要的应用价值。本文介绍了基于主题本体扩展特征的短文本分类技术的基本原理和应用方法,分析了国内外研究现状和存在问题,并提出了未来的研究方向和展望。 关键词:短文本分类;主题本体;特征扩展;文本分类准确率;性能提高。 Abstract Shorttextclassificationisoneoftheimportantfieldsinnaturallanguageprocessing,andithassignificantmeaningforinformationretrievalandtextclassification.Intheprocessofshorttextclassification,thetopicontologycaneffectivelyextendthetextfeatures,improvingtheaccuracyandperformanceoftextclassification.Theresearchanddiscussiononshorttextclassificationtechnologybasedontopicontologyfeatureexpansionarepresentedinthispaper.Throughexperiments,itisprovedthatthetopicontologyfeatureexpansionhassignificantapplicationvalueinshorttextclassification.Thispaperintroducesthebasicprincipleandapplicationmethodofshorttextclassificationtechnologybasedontopicontologyfeatureexpansion,analyzesthedomesticandforeignresearchstatusandexistingproblems,andproposesfutureresearchdirectionsandprospects. Keywords:shorttextclassification;topicontology;featureextension;textclassificationaccuracy;performanceimprovement. 1.Introduction Withtherapiddevelopmentoftheinformationage,textdatahasbecomethemostimportantcarrierofinformationcommunicationandsharing.However,withtheincreasingamountoftextdata,itisachallengingtasktoextractvaluableinformationfrommassivetextdata,whichrequireshigh-levelartificialintelligenceandnaturallanguageprocessingtechnology.Shorttextclassificationisanimportanttaskinnaturallanguageprocessing,whichaimsatassigningshorttextstopredefinedcategoriesbasedontheircontent.Ithasbeenwidelyusedinspamfiltering,sentimentanalysis,newsclassification,andsoon. However,shorttextclassificationisachallengingtaskduetothesparsityandambiguityofshorttexts.Traditionalclassificationmethodsusuallyrelyonfeaturesextractedfromtexts,suchasbag-of-wordsorn-grammodels,butthesefeaturesmaynotcapturethesemanticinformationoftextswell,resultinginlowclassification