预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于图形分析方法的函数型数据异常值检验实证研究 Abstract: Thedetectionofoutliersisavitalaspectinstatisticalanalysis,anditbecomesmorechallengingwhendatasetstaketheformofafunctionratherthantraditionalvectordata.Inthispaper,wepresentanempiricalstudyofdetectingfunctionaloutliersthroughgraph-basedanalysismethods.Wefirstintroducetheconceptoffunctionaldataandtraditionaloutlierdetectionmethods.Then,wefocusonthegraph-basedapproach,includingconstructingthegraph,definingdistancemetrics,andidentifyingoutliers.Wedemonstratetheeffectivenessofthisapproachonsimulateddataandareal-worlddatasetrelatedtotemperaturereadings.Theresultsshowthatthegraph-basedapproachachievedhighsensitivityandspecificityinidentifyingfunctionaloutliers. Introduction: Outlierdetectionisacriticalissueindataanalysis,withvariousapplicationssuchasqualitycontrol,frauddetection,andanomalydetection.Traditionaloutlierdetectionmethodsaremostlydesignedforvectordata,whereeachobservationisrepresentedasapointinap-dimensionalspace.However,inmanyreal-worldscenarios,datacouldbefunctional,i.e.,asetoffunctionsobservedoveraparticulardomain.Forexample,medicalimaging,geospatialdata,andenvironmentalmonitoringgeneratefunctionaldata. Functionaldataanalysis(FDA)hasemergedasanessentialtooltohandlefunctionaldata,anditincludestechniquessuchasfunctionalprincipalcomponentanalysis,functionalregressionanalysis,andfunctionaldataclustering.Outlierdetectioninfunctionaldataischallengingduetoitshighdimensionalityandcomplexstructures.Functionaldataoutlierscouldtakemanyformssuchasoverallshapedeviation,localcurvaturedeviation,amplitudedeviation,andphasedeviation. Inthispaper,wepresentanempiricalstudyofagraph-basedoutlierdetectionmethodforfunctionaldata.Themethodemploysgraph-basedrepresentations,metrics,andalgorithmstoidentifyfunctionaloutliers.Wefirstlyintroducefunctionaldataandtraditionaloutlierdetectionmethods.Then,wefocusongraph-basedoutlierdetectionmethods,includinggraphconstruction,distancemetrics,andoutlieridentification.Finally,wedemonstratetheeffectivenessofthemet