预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于多Agent技术的图书推荐系统研究 Abstract WiththerapiddevelopmentofinformationtechnologyandtheInternet,thetraditionalbookrecommendationsystemhasgraduallyfacedvariouschallenges.Inordertoimprovetheaccuracyandefficiencyofbookrecommendation,thispaperproposestheuseofmulti-agenttechnologytodevelopabookrecommendationsystem.Thesystemusesmulti-agentcollaborationtocollectuserinformationandpreferences,thenanalyzesthedatausingcollaborativefilteringalgorithmtogeneratepersonalizedbookrecommendationsforeachuser.Theexperimentalresultsshowedthatthissystemhashighaccuracyandefficiencyinrecommendingbookstousers,andhasconsiderablepracticalvalue. Introduction WiththerapiddevelopmentoftheInternetandinformationtechnology,anenormousamountofdataisgeneratedeveryday.Findingvaluableinformationfromthemassivedataisachallenge,especiallywithregardstothefieldofbookrecommendation.Thetraditionalbookrecommendationsystemoftenreliesonuserratingsorrequests,anditisnotapersonalizedandefficientsystem.Inrecentyears,multi-agenttechnologyhasbeenappliedtovariousfieldsandachievedgreatsuccess.Byusingmulti-agenttechnology,thebookrecommendationsystemcancollectmoreaccurateuserdataandprovidemorepersonalizedrecommendations. Thispaperproposestheuseofmulti-agenttechnologytodevelopabookrecommendationsystem.Thesystemisbasedonthecollaborativefilteringalgorithm,whichhasbeenusedinmanyrecommendationsystems.Thisalgorithmhasproveneffectivenessinpredictinguserpreferencesbyanalyzingsimilarusersandtheirpreferences.Intheproposedsystem,eachagentisresponsibleforcollectingandanalyzinguserinformationandpreferences,andthengeneratingrecommendations.Differentagentsworktogethertoformthecompletesystem,whichcanprovideamoreaccurateandpersonalizedbookrecommendationserviceforusers. Multi-AgentTechnologyforBookRecommendation Multi-agenttechnologyisadistributedcomputingtechnology,whichsimulatestheinteractionandcooperationbetweenagentsinavirtualenvironment,andcompletescomplextasksbydividingthemintosmallersub-tasks.Inthebookrecommendationsystem,eachagentcanbecon