预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进卷积神经网络的车型识别 Title:ImprovingConvolutionalNeuralNetworksforCarClassification Abstract: Withtherapidadvancementofdeeplearningtechniques,convolutionalneuralnetworks(CNNs)havebecomeapowerfultoolforimageclassificationtasks.Inthispaper,weaimtoimprovetheaccuracyofcarclassificationusinganenhancedCNNmodel.Weproposeseveralstrategiestoenhancethenetworkarchitecture,datapreprocessing,andtrainingprocess.Theseimprovementsarevalidatedthroughextensiveexperimentsonacardataset,demonstratingtheireffectivenessinenhancingcarrecognitionperformance. 1.Introduction 1.1Background Carclassificationplaysacrucialroleinvariousapplications,suchastrafficmanagement,autonomousdriving,andsurveillancesystems.Theaccurateidentificationofcarmodelsfromimagesposesasignificantchallengeduetovariationsinviewpoints,lightingconditions,andocclusions.ConvolutionalNeuralNetworks(CNNs)haveshownpromisingperformanceinimageclassificationtasks,motivatingustoexploretheirpotentialforcarrecognition. 1.2Objectives TheobjectiveofthisresearchistoimprovetheaccuracyofcarclassificationusinganenhancedCNNmodel.Weaimtoexplorestrategiesforoptimizingthenetworkarchitecture,datapreprocessing,andtrainingprocess. 2.RelatedWork ThissectionreviewspreviousstudiesoncarclassificationandintroducestherelevantliteratureonimprovingCNNs.Itcoversacomprehensiveanalysisofvariousapproaches,suchastransferlearning,dataaugmentation,andarchitectureenhancements. 3.Methodology 3.1Dataset Weutilizealarge-scalecardataset,consistingofimagescollectedfromvarioussources,totrainandevaluateourCNNmodel.Thedatasetcontainsadiverserangeofcarmodels,makingitsuitablefortrainingarobustcarclassifier. 3.2EnhancedCNNArchitecture WeproposeanimprovedCNNarchitectureforcarclassification.Thisarchitectureincorporatesseveralmodifications,suchasincreaseddepth,theuseofresidualconnections,andtheinclusionofattentionmechanisms.Theseenhancementsaimtocapturemoredetailedanddiscriminativefeaturesfromcarimages,leadingtoimprovedclassificationaccuracy. 3.3DataPreprocessing Toimprovetheperfo