预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于加权合成少数类过采样技术的故障诊断 摘要 故障诊断是工业领域中的重要问题之一,而在故障诊断中,少数类样本往往难以被正确分类,因为其数量较少,且常常被误分类为多数类。因此,本文提出了加权合成少数类过采样技术来解决这个问题。这种方法能够有效地增加少数类样本的数量,并提高分类的准确率。同时,我们将该方法与其他常见的过采样技术进行了比较,结果表明加权合成少数类过采样技术具有更好的性能。 关键词:故障诊断,过采样技术,少数类,加权合成 Abstract Faultdiagnosisisoneoftheimportantproblemsintheindustrialfield.Infaultdiagnosis,minoritysamplesareoftendifficulttobecorrectlyclassifiedbecauseoftheirsmallnumberandtheyareoftenmisclassifiedasmajoritysamples.Therefore,thispaperproposesaweightedsyntheticminorityover-samplingtechniquetosolvethisproblem.Thismethodcaneffectivelyincreasethenumberofminoritysamplesandimprovetheaccuracyofclassification.Atthesametime,wecomparedthismethodwithothercommonover-samplingtechniques.Theresultsshowthattheweightedsyntheticminorityover-samplingtechniquehasbetterperformance. Keyword:faultdiagnosis,over-samplingtechnique,minorityclass,weightedsynthesis 1.Introduction Faultdiagnosisisanimportanttaskinindustrialsystems.Itisessentialforensuringthereliabilityofthesystemandimprovingitsefficiency.Theaccuracyoffaultdiagnosislargelydependsonthequalityoftheinputdata.However,inmanycases,thedataisimbalanced,makingitdifficulttoachieveaccuratefaultdiagnosis.Specifically,thenumberofminorityclasssamplesisoftensignificantlysmallerthanthenumberofmajorityclasssamples,leadingtoabiasedlearningprocess.Toovercomethisproblem,itisnecessarytodevelopeffectivemethodstohandletheimbalanceddata. Over-samplingisacommontechniqueforhandlingimbalanceddata.Itinvolvesgeneratingsyntheticsamplesbyreplicatingtheminorityclassorconstructingnewsamplesbasedontheexistingminorityclasssamples.Thesetechniquescanhelpbalancethenumberofsamplesbetweenthemajorityandminorityclasses,andimprovetheaccuracyofthemodel. However,traditionalover-samplingtechniquessuchasrandomoversamplingandSMOTE(SyntheticMinorityOver-SamplingTechnique)mayresultinoverfittingandlimitedeffectiveness.Therefore,inthispaper,weproposeaweightedsyntheticminorityover-samplingtechniquetoaddresstheaboveissues. 2.RelatedWork 2.1TraditionalOver-SamplingTechni