预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于小世界优化的支持向量机风电功率预测 Abstract Inrecentyears,windpowerhasbecomeanimportantsourceofrenewableenergy,andaccuratewindpowerpredictioncangreatlyimprovethemanagementandcontrolofwindfarms.Amongvariouswindpowerpredictionmethods,SupportVectorMachine(SVM)hasreceivedsignificantattentionduetoitsexcellentperformance.However,thestandardSVMmodelhaslimitationsinhandlingnon-linearandhigh-dimensionaldata.Therefore,inthispaper,weproposeanoptimizedSVMmodelbasedonthesmallworldnetworktheorytoenhancetheperformanceofwindpowerprediction.TheproposedmodeliscomparedwiththestandardSVMmodel,andtheresultsshowthattheoptimizedSVMmodelcaneffectivelyimprovetheaccuracyofwindpowerprediction. Introduction Windpowerhasbeenrecognizedasanimportantalternativesourceofrenewableenergyduetoitsenvironmentalbenefitsandeconomicadvantages.Accuratewindpowerpredictionisessentialforthemanagementandcontrolofwindfarms,asitcanhelptoimprovetheintegrationofwindpowerintothepowergridandreducethecostsofpowergeneration.However,windpowerpredictionisachallengingtaskduetothecomplexandnon-linearnatureofwindpowergeneration. SupportVectorMachine(SVM)isapopularmachinelearningmethodforwindpowerpredictionduetoitsrobustnessandaccuracy.However,thestandardSVMmodelhaslimitationsinhandlingnon-linearandhigh-dimensionaldata.Inrecentyears,manystudieshaveproposedoptimizationmethodstoenhancetheperformanceofSVMforwindpowerprediction.Inthispaper,weproposeanoptimizedSVMmodelbasedonthesmallworldnetworktheory. Smallworldnetworktheoryisamathematicalmodelthatdescribesthecomplexnetworksfoundinmanynaturalandsocialsystems.ThesmallworldmodelwasfirstproposedbyWattsandStrogatzin1998,andithasbeenwidelyappliedinvariousfields,suchasbiology,sociology,andcomputerscience.Thesmallworldnetworkischaracterizedbyhighclusteringandshortpathlengths,whichmeansthatithasbothlocalandglobalconnectivity.Thesmallworldnetworktheoryhasbeenusedinmachinelearningtoimprovetheperformanceofclassificationandregressiontasks. Inthispaper,weapplythesmallworldnetworktheorytooptimizetheSVMmodelf