预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于径向基神经网络的叶轮轴面投影图优化 摘要 本文研究了基于径向基神经网络的叶轮轴面投影图优化问题。传统的叶轮设计需要大量的试验和经验来确定合适的叶片形状,这种设计方式效率低下且存在许多不确定性。为了解决这个问题,本文提出了一种基于径向基神经网络的优化方法,旨在找到最佳的叶片形状,使得叶轮具有更高的效率和更好的性能。通过实验验证,本文所提出的方法具有较高的精度和可靠性,可以为叶轮设计和优化提供有力的支持和指导。 关键词:径向基神经网络,叶轮设计,投影图优化,精度,可靠性。 Introduction Thedesignofimpellerinpumpsandturbinesisacomplexandchallengingtask,whichrequiresadeepunderstandingoffluiddynamicsandmechanicalengineering.Traditionally,impellerdesigninvolvesalargenumberofexperimentsandtrial-and-errorprocesses,whicharetime-consumingandsomewhatuncertain.Therefore,amoreefficientandreliableapproachisneededtooptimizetheimpellerbladeshapeandimprovetheimpeller'sperformance. Inrecentyears,neuralnetworkshaveemergedaspowerfultoolsforoptimization,modeling,andpredictioninvariousfields.Inparticular,radialbasisfunction(RBF)neuralnetworkshavebeenwidelyusedinengineeringandscienceduetotheirexcellentinterpolationandapproximationcapabilities.RBFneuralnetworksarebasicallyatypeofartificialneuralnetworkthatusesradialbasisfunctionsasactivationfunctions.Theyareparticularlyeffectiveinsolvingnonlinearproblemsandcanapproximateanycontinuousfunctionwitharbitraryprecision. Inthispaper,weapplyRBFneuralnetworkstooptimizetheimpellerbladeshapeinpumpsandturbines,specifically,theaxialprojectionoftheimpellerbladeshape.Themainobjectiveistofindtheoptimalbladeshapethatmaximizestheimpeller'sefficiencyandperformance.TheproposedmethodisbasedonacombinationofRBFneuralnetworksandoptimizationalgorithms,includingthegeneticalgorithmandtheparticleswarmoptimizationalgorithm. Methodology ThemethodologyforimpellerbladeshapeoptimizationbasedonRBFneuralnetworkscanbedividedintothefollowingsteps: Step1:DataCollection Thefirststepistocollectthenecessarydataforimpellerbladeshapeoptimization,includingthegeometricparametersoftheimpeller,theflowrate,andthehead.Theseparametersareusedtosimulatetheflowfieldaroundtheimpellerandgeneratetheaxialprojectionoftheimpellerbladeshape. Step2:RBFNeuralNetworkTraining ThesecondstepistotraintheRBFneuralnetworkusingthecollectedda