预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于动态环境衰减的粒子滤波室内定位算法 摘要 室内定位在现代社会中具有广泛应用。在实现这一目标时,粒子滤波算法已被证明是一种有前途的方法。然而,在现实情况下,环境中的衰减导致粒子滤波的精度降低。针对这一问题,本文提出了一种基于动态环境衰减的粒子滤波室内定位算法。该算法通过考虑环境衰减的动态变化,通过预估随机游走模型和权重计算来提高粒子滤波的精度。 关键词:室内定位,粒子滤波,动态环境衰减。 Abstract Indoorpositioninghaswideapplicationsinmodernsociety.Particlefilteringalgorithmhasprovedtobeapromisingmethodforachievingthisgoal.However,inpracticalsituations,attenuationintheenvironmentleadstoadecreaseintheaccuracyofparticlefiltering.Tosolvethisproblem,thispaperproposesaparticlefilteringindoorpositioningalgorithmbasedondynamicenvironmentalattenuation.Thealgorithmimprovestheaccuracyofparticlefilteringbyconsideringthedynamicchangesofenvironmentalattenuation,estimatingtherandomwalkmodel,andcalculatingtheweight. Keywords:indoorpositioning,particlefiltering,dynamicenvironmentalattenuation. Introduction Indoorpositioningiswidelyusedinmodernsociety,suchasinhospitals,shoppingmalls,offices,andairports.Withthegrowingdemandforlocation-basedservices,indoorpositioningtechnologyhasbeendevelopedrapidlyinrecentyears.Theultimategoalofindoorpositioningistoprovideuserswithaccuratelocationinformation.However,itfacesnumerouschallenges,suchassignalinterference,multipatheffects,andnon-line-of-sight(NLOS)propagation.Tosolvetheseproblems,variousalgorithmshavebeenproposed,includingfingerprinting,triangulation,andparticlefiltering. Amongthesealgorithms,particlefilteringhasshownexcellentperformanceinindoorpositioningduetoitsabilitytohandlenon-Gaussianandnon-linearproblems.However,inpracticalsituations,attenuationintheenvironmentleadstoadecreaseintheaccuracyofparticlefiltering.Theattenuationofthesignalvarieswiththeenvironment,whichleadstoadynamicchangeintheaccuracyofthepositioningalgorithm.Tosolvethisproblem,aparticlefilteringindoorpositioningalgorithmbasedondynamicenvironmentalattenuationisproposedinthispaper. Methodology Theproposedalgorithmconsistsofthreemainparts:prediction,weighting,andresampling.Thepredictionstageestimatesthestateofthesystemusingtherandomwalkmodel.Theweightingstagecalcu