预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于改进CNN框架的人体动作识别 Title:HumanActionRecognitionusingImprovedConvolutionalNeuralNetworkFramework Abstract: Humanactionrecognitionisafundamentaltaskincomputervisionwithvariouspracticalapplications.ConvolutionalNeuralNetworks(CNNs)haveshownremarkableperformanceinimageandvideoclassificationtasks,includinghumanactionrecognition.However,thecomplexityanddiversityofhumanactionsposechallengesforachievingaccurateandrobustrecognition. ThispaperproposesanimprovedCNNframeworkforhumanactionrecognition.TheframeworkaimstoaddresssomeofthelimitationsinexistingCNNarchitectures,suchascapturingspatialandtemporalinformation,handlinglargevariationsinactionappearance,andincorporatingcontextualinformation. 1.Introduction: Humanactionrecognitionhasreceivedsignificantattentionduetoitswiderangeofapplicationsinvideosurveillance,sportsanalysis,healthcare,andhuman-computerinteraction.Traditionalmethodsoftenrelyonhandcraftedfeaturesandrequireextensivedomainknowledge.However,withtheadventofdeeplearning,CNNshavedemonstratedpromisingresultsinseveralcomputervisiontasks,includinghumanactionrecognition. 2.RelatedWork: ThissectionreviewsthepreviousworksonCNN-basedhumanactionrecognitionframeworks.Ithighlightstheadvancementsmadeinspatialandtemporalmodeling,featureextraction,andfusionstrategies.ItalsodiscussesthechallengesfacedbyexistingapproachesandthemotivationfortheproposedimprovedCNNframework. 3.ProposedImprovedCNNFramework: Theproposedframeworkconsistsofseveralkeycomponentsdesignedtoenhancetheperformanceofhumanactionrecognition.Thesecomponentsinclude: 3.1Spatial-temporalConvolutionalLayers: Tocaptureboththespatialandtemporalinformation,theproposedframeworkincorporates3Dconvolutionallayers.Theselayerscombinetheadvantagesof2Dspatialconvolutionalfiltersand1Dtemporalconvolutionfilters,enablingthenetworktolearnbothappearanceandmotioncuessimultaneously. 3.2AttentionMechanism: Toaddressthechallengesoflargevariationsinactionappearanceandachievebetterdiscrimination,anattentionmechanismisintegratedintotheframework