预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一种复杂环境下的电力线检测方法 Title:AComplexEnvironmentPowerLineInspectionMethod Abstract: Powerlineinspectionplaysacrucialroleinidentifyingpotentialthreatstotheelectricalgridandensuringthereliabledistributionofelectricity.However,conventionalinspectionmethodsmaynotadequatelyaddressthechallengesposedbycomplexenvironments.Thispaperpresentsacomprehensiveapproachforpowerlineinspectionincomplexenvironments,consideringfactorssuchasterrain,weatherconditions,andvegetationinterference.Theproposedmethodcombinesremotesensingtechnologies,dataprocessingalgorithms,andaerialroboticstoenhancetheefficiencyandaccuracyofpowerlineinspection.Experimentalresultsdemonstratetheeffectivenessofthemethodindetectinganddiagnosingpowerlinefaultsincomplexenvironments. 1.Introduction Withtheincreasingdemandforelectricity,powergridsoftenextendintocomplexenvironmentssuchasforests,mountains,andurbanareas.Theseenvironmentsposesignificantchallengesforpowerlineinspectionduetolimitedaccessibility,adverseweatherconditions,andvegetationinterference.Traditionalinspectionmethodsthatrelyonhumanoperatorsorground-basedvehiclesmaynotbesuitableforsuchenvironments.Therefore,thereisaneedforinnovativeapproachesthatcanovercomethesechallengesandensurethereliableoperationofpowerlines. 2.RemoteSensingTechnologies Remotesensingtechnologies,suchasLiDAR(LightDetectionandRanging)andaerialimaging,offervaluableinformationforpowerlineinspectionincomplexenvironments.LiDARcanprovideaccurateelevationdataand3Dmodelsoftheterrain,helpingtoidentifypotentialobstaclesandclearanceviolations.Aerialimaging,includinghigh-resolutionphotographyandthermalimaging,candetectvegetationencroachments,hotspots,andotheranomaliesalongpowerlines. 3.DataProcessingAlgorithms Toeffectivelyanalyzethedatacollectedfromremotesensingtechnologies,advancedalgorithmsarerequired.Machinelearningtechniques,suchasArtificialNeuralNetworks(ANN)andSupportVectorMachines(SVM),canbetrainedtoidentifyspecificpatternsassociatedwithpowerlinefaults.Additionally,imageprocessingalgorithmscanb